» Articles » PMID: 27888301

The Genome Sequence and Insights into the Immunogenetics of the Bananaquit (Passeriformes: Coereba Flaveola)

Overview
Journal Immunogenetics
Date 2016 Nov 27
PMID 27888301
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Avian genomics, especially of non-model species, is in its infancy relative to mammalian genomics. Here, we describe the sequencing, assembly, and annotation of a new avian genome, that of the bananaquit Coereba flaveola (Passeriformes: Thraupidae). We produced ∼30-fold coverage of the genome with an assembly size of ca. 1.2 Gb, including approximately 16,500 annotated genes. Passerine birds, such as the bananaquit, are commonly infected by avian malarial parasites (Haemosporida), which presumably drive adaptive evolution of immunogenetic loci within the host genome. In the context of our research on the distribution of avian Haemosporida, we specifically characterized immune loci, including toll-like receptor (TLR) and major histocompatibility complex (MHC) genes. Additionally, we identified novel molecular markers in the form of single nucleotide polymorphisms (SNPs), both genome-wide and within identified immune loci. We discovered nine TLR genes and four MHC genes and identified five other TLR- or MHC- associated genes. Genome-wide, over 6 million high-quality SNPs were annotated, including 568 within TLR genes and 102 in MHC genes. This newly described genome and immune characterization expands the knowledge base for avian genomics and phylogenetics and allows for immune genotyping in the bananaquit, providing tools for the investigation of host-parasite coevolution.

Citing Articles

Urbanization drives adaptive evolution in a Neotropical bird.

Mascarenhas R, Meirelles P, Batalha-Filho H Curr Zool. 2023; 69(5):607-619.

PMID: 37637315 PMC: 10449428. DOI: 10.1093/cz/zoac066.


Adaptive genetic diversity and evidence of population genetic structure in the endangered Sierra Madre Sparrow (Xenospiza baileyi).

Ham-Duenas J, Canales-Del-Castillo R, Voelker G, Ruvalcaba-Ortega I, Aguirre-Calderon C, Gonzalez-Rojas J PLoS One. 2020; 15(4):e0232282.

PMID: 32352998 PMC: 7192469. DOI: 10.1371/journal.pone.0232282.


First de novo whole genome sequencing and assembly of the bar-headed goose.

Wang W, Wang F, Hao R, Wang A, Sharshov K, Druzyaka A PeerJ. 2020; 8:e8914.

PMID: 32292659 PMC: 7144584. DOI: 10.7717/peerj.8914.


Episodic positive diversifying selection on key immune system genes in major avian lineages.

Antonides J, Mathur S, DeWoody J Genetica. 2019; 147(5-6):337-350.

PMID: 31782071 DOI: 10.1007/s10709-019-00081-3.


Immunogenetic response of the bananaquit in the face of malarial parasites.

Antonides J, Mathur S, Sundaram M, Ricklefs R, DeWoody J BMC Evol Biol. 2019; 19(1):107.

PMID: 31113360 PMC: 6529992. DOI: 10.1186/s12862-019-1435-y.


References
1.
Dolezel J, Bartos J, Voglmayr H, Greilhuber J . Nuclear DNA content and genome size of trout and human. Cytometry A. 2003; 51(2):127-8; author reply 129. DOI: 10.1002/cyto.a.10013. View

2.
Alcaide M, Edwards S . Molecular evolution of the toll-like receptor multigene family in birds. Mol Biol Evol. 2011; 28(5):1703-15. DOI: 10.1093/molbev/msq351. View

3.
DeWoody J, Abts K, Fahey A, Ji Y, Kimble S, Marra N . Of contigs and quagmires: next-generation sequencing pitfalls associated with transcriptomic studies. Mol Ecol Resour. 2013; 13(4):551-8. DOI: 10.1111/1755-0998.12107. View

4.
Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J . SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience. 2013; 1(1):18. PMC: 3626529. DOI: 10.1186/2047-217X-1-18. View

5.
Wijayawardena B, Minchella D, DeWoody J . Hosts, parasites, and horizontal gene transfer. Trends Parasitol. 2013; 29(7):329-38. DOI: 10.1016/j.pt.2013.05.001. View