» Articles » PMID: 27887868

Reassessing APOBEC3G Inhibition by HIV-1 Vif-Derived Peptides

Overview
Journal J Mol Biol
Publisher Elsevier
Date 2016 Nov 27
PMID 27887868
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

The human APOBEC3G (A3G) enzyme restricts HIV-1 in the absence of the viral accessory protein viral infectivity factor (Vif) by deaminating viral cDNA cytosines to uracils. These uracil lesions base-pair with adenines during the completion of reverse transcription and result in A3G signature G-to-A mutations in the viral genome. Vif protects HIV-1 from A3G-mediated restriction by forming an E3-ubiquitin ligase complex to polyubiquitinate A3G and trigger its degradation. Prior studies indicated that Vif may also directly block the enzymatic activity of A3G and, provocatively, that Vif-derived peptides, Vif 25-39 and Vif 105-119, are similarly inhibitory. Here, we show that Vif 25-39 does not inhibit A3G enzymatic activity and that the inhibitory effect of Vif 105-119 and that of a shorter derivative Vif 107-115, although recapitulated, are non-specific. We also elaborate a simple method for assaying DNA cytosine deaminase activity that eliminates potential polymerase chain reaction-induced biases. Our results show that these Vif-derived peptides are unlikely to be useful as tools to study A3G function or as leads for the development of future therapeutics.

Citing Articles

Design of Vif-Derived Peptide Inhibitors with Anti-HIV-1 Activity by Interrupting Vif-CBFβ Interaction.

Gai Y, Duan S, Wang S, Liu K, Yu X, Yang C Viruses. 2024; 16(4).

PMID: 38675833 PMC: 11053914. DOI: 10.3390/v16040490.


Direct inhibition of human APOBEC3 deaminases by HIV-1 Vif independent of the proteolysis pathway.

Kamba K, Wan L, Unzai S, Morishita R, Takaori-Kondo A, Nagata T Biophys J. 2023; 123(3):294-306.

PMID: 38115583 PMC: 10870137. DOI: 10.1016/j.bpj.2023.12.015.


Leveraging the therapeutic, biological, and self-assembling potential of peptides for the treatment of viral infections.

Monroe M, Wang H, Anderson C, Jia H, Flexner C, Cui H J Control Release. 2022; 348:1028-1049.

PMID: 35752254 PMC: 11022941. DOI: 10.1016/j.jconrel.2022.06.037.


Dendritic Cells, the Double Agent in the War Against HIV-1.

Martin-Moreno A, Munoz-Fernandez M Front Immunol. 2019; 10:2485.

PMID: 31708924 PMC: 6820366. DOI: 10.3389/fimmu.2019.02485.


APOBEC Enzymes as Targets for Virus and Cancer Therapy.

Olson M, Harris R, Harki D Cell Chem Biol. 2017; 25(1):36-49.

PMID: 29153851 PMC: 5775913. DOI: 10.1016/j.chembiol.2017.10.007.

References
1.
Chelico L, Pham P, Calabrese P, Goodman M . APOBEC3G DNA deaminase acts processively 3' --> 5' on single-stranded DNA. Nat Struct Mol Biol. 2006; 13(5):392-9. DOI: 10.1038/nsmb1086. View

2.
Opi S, Kao S, Goila-Gaur R, Khan M, Miyagi E, Takeuchi H . Human immunodeficiency virus type 1 Vif inhibits packaging and antiviral activity of a degradation-resistant APOBEC3G variant. J Virol. 2007; 81(15):8236-46. PMC: 1951302. DOI: 10.1128/JVI.02694-06. View

3.
Britan-Rosich E, Nowarski R, Kotler M . Multifaceted counter-APOBEC3G mechanisms employed by HIV-1 Vif. J Mol Biol. 2011; 410(5):1065-76. PMC: 3139112. DOI: 10.1016/j.jmb.2011.03.058. View

4.
Harris R, Dudley J . APOBECs and virus restriction. Virology. 2015; 479-480:131-45. PMC: 4424171. DOI: 10.1016/j.virol.2015.03.012. View

5.
Burns M, Lackey L, Carpenter M, Rathore A, Land A, Leonard B . APOBEC3B is an enzymatic source of mutation in breast cancer. Nature. 2013; 494(7437):366-70. PMC: 3907282. DOI: 10.1038/nature11881. View