» Articles » PMID: 27863243

The C. elegans Taste Receptor Homolog LITE-1 Is a Photoreceptor

Overview
Journal Cell
Publisher Cell Press
Specialty Cell Biology
Date 2016 Nov 19
PMID 27863243
Citations 39
Authors
Affiliations
Soon will be listed here.
Abstract

Many animal tissues/cells are photosensitive, yet only two types of photoreceptors (i.e., opsins and cryptochromes) have been discovered in metazoans. The question arises as to whether unknown types of photoreceptors exist in the animal kingdom. LITE-1, a seven-transmembrane gustatory receptor (GR) homolog, mediates UV-light-induced avoidance behavior in C. elegans. However, it is not known whether LITE-1 functions as a chemoreceptor or photoreceptor. Here, we show that LITE-1 directly absorbs both UVA and UVB light with an extinction coefficient 10-100 times that of opsins and cryptochromes, indicating that LITE-1 is highly efficient in capturing photons. Unlike typical photoreceptors employing a prosthetic chromophore to capture photons, LITE-1 strictly depends on its protein conformation for photon absorption. We have further identified two tryptophan residues critical for LITE-1 function. Interestingly, unlike GPCRs, LITE-1 adopts a reversed membrane topology. Thus, LITE-1, a taste receptor homolog, represents a distinct type of photoreceptor in the animal kingdom.

Citing Articles

Non-Visual Light Sensing Enhances Behavioral Memory and Drives Gene Expression in .

Ji Z, Wang B, Chandra R, Liu J, Yang S, Long Y bioRxiv. 2025; .

PMID: 39975403 PMC: 11838244. DOI: 10.1101/2025.01.27.634647.


C. elegans PPEF-type phosphatase (Retinal degeneration C ortholog) functions in diverse classes of cilia to regulate nematode behaviors.

Barbelanne M, Lu Y, Kumar K, Zhang X, Li C, Park K Sci Rep. 2024; 14(1):28347.

PMID: 39550471 PMC: 11569196. DOI: 10.1038/s41598-024-79057-z.


cGMP-dependent pathway and a GPCR kinase are required for photoresponse in the nematode Pristionchus pacificus.

Nakayama K, Hiraga H, Manabe A, Chihara T, Okumura M PLoS Genet. 2024; 20(11):e1011320.

PMID: 39541254 PMC: 11563456. DOI: 10.1371/journal.pgen.1011320.


Shear stress sensing in C. elegans.

Zhang Z, Li X, Wang C, Zhang F, Liu J, Xu X Curr Biol. 2024; 34(22):5382-5391.e3.

PMID: 39471806 PMC: 11576262. DOI: 10.1016/j.cub.2024.09.075.


Activity-dependent mitochondrial ROS signaling regulates recruitment of glutamate receptors to synapses.

Doser R, Knight K, Deihl E, Hoerndli F Elife. 2024; 13.

PMID: 38483244 PMC: 10990490. DOI: 10.7554/eLife.92376.


References
1.
Okano T, Fukada Y, Shichida Y, Yoshizawa T . Photosensitivities of iodopsin and rhodopsins. Photochem Photobiol. 1992; 56(6):995-1001. DOI: 10.1111/j.1751-1097.1992.tb09722.x. View

2.
De Bono M, Maricq A . Neuronal substrates of complex behaviors in C. elegans. Annu Rev Neurosci. 2005; 28:451-501. DOI: 10.1146/annurev.neuro.27.070203.144259. View

3.
Christie J, Arvai A, Baxter K, Heilmann M, Pratt A, OHara A . Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges. Science. 2012; 335(6075):1492-6. PMC: 3505452. DOI: 10.1126/science.1218091. View

4.
Ni L, Bronk P, Chang E, Lowell A, Flam J, Panzano V . A gustatory receptor paralogue controls rapid warmth avoidance in Drosophila. Nature. 2013; 500(7464):580-4. PMC: 3758369. DOI: 10.1038/nature12390. View

5.
Radding C, WALD G . Acid-base properties of rhodopsin and opsin. J Gen Physiol. 1956; 39(6):909-22. PMC: 2147574. DOI: 10.1085/jgp.39.6.909. View