» Articles » PMID: 27829460

Renal Function Estimation and Cockroft-Gault Formulas for Predicting Cardiovascular Mortality in Population-based, Cardiovascular Risk, Heart Failure and Post-myocardial Infarction Cohorts: The Heart 'OMics' in AGEing (HOMAGE) and the High-risk...

Abstract

Background: Renal impairment is a major risk factor for mortality in various populations. Three formulas are frequently used to assess both glomerular filtration rate (eGFR) or creatinine clearance (CrCl) and mortality prediction: body surface area adjusted-Cockcroft-Gault (CG-BSA), Modification of Diet in Renal Disease Study (MDRD4), and the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation. The CKD-EPI is the most accurate eGFR estimator as compared to a "gold-standard"; however, which of the latter is the best formula to assess prognosis remains to be clarified. This study aimed to compare the prognostic value of these formulas in predicting the risk of cardiovascular mortality (CVM) in population-based, cardiovascular risk, heart failure (HF) and post-myocardial infarction (MI) cohorts.

Methods: Two previously published cohorts of pooled patient data derived from the partners involved in the HOMAGE-consortium and from four clinical trials - CAPRICORN, EPHESUS, OPTIMAAL and VALIANT - the high risk MI initiative, were used. A total of 54,111 patients were included in the present analysis: 2644 from population-based cohorts; 20,895 from cardiovascular risk cohorts; 1801 from heart failure cohorts; and 28,771 from post-myocardial infarction cohorts. Participants were patients enrolled in the respective cohorts and trials. The primary outcome was CVM.

Results: All formulas were strongly and independently associated with CVM. Lower eGFR/CrCl was associated with increasing CVM rates for values below 60 mL/min/m. Categorical renal function stages diverged in a more pronounced manner with the CG-BSA formula in all populations (higher χ values), with lower stages showing stronger associations. The discriminative improvement driven by the CG-BSA formula was superior to that of MDRD4 and CKD-EPI, but remained low overall (increase in C-index ranging from 0.5 to 2 %) while not statistically significant in population-based cohorts. The integrated discrimination improvement and net reclassification improvement were higher (P < 0.05) for the CG-BSA formula compared to MDRD4 and CKD-EPI in CV risk, HF and post-MI cohorts, but not in population-based cohorts. The CKD-EPI formula was superior overall to MDRD4.

Conclusions: The CG-BSA formula was slightly more accurate in predicting CVM in CV risk, HF, and post-MI cohorts (but not in population-based cohorts). However, the CG-BSA discriminative improvement was globally low compared to MDRD4 and especially CKD-EPI, the latter offering the best compromise between renal function estimation and CVM prediction.

Citing Articles

Circulating mitochondrial DNA signature in cardiometabolic patients.

Mengozzi A, Armenia S, De Biase N, Punta L, Cappelli F, Duranti E Cardiovasc Diabetol. 2025; 24(1):106.

PMID: 40045401 PMC: 11884014. DOI: 10.1186/s12933-025-02656-1.


Renal function modifies the association between hemoconcentration and outcomes in hospitalized heart failure patients.

Huang L, Zhao X, Liang L, Tian P, Chen Y, Zhai M Intern Emerg Med. 2024; 19(2):399-411.

PMID: 38233579 DOI: 10.1007/s11739-023-03488-1.


Prevalence and risk factors of chronic kidney disease among patients with type 2 diabetes mellitus at a tertiary care hospital in Nepal: a cross-sectional study.

Joshi R, Subedi P, Yadav G, Khadka S, Rijal T, Amgain K BMJ Open. 2023; 13(2):e067238.

PMID: 36854582 PMC: 9980322. DOI: 10.1136/bmjopen-2022-067238.


Renal Assessment in Acute Cardiorenal Syndrome.

Lagosz P, Biegus J, Urban S, Zymlinski R Biomolecules. 2023; 13(2).

PMID: 36830608 PMC: 9953721. DOI: 10.3390/biom13020239.


Comparing and contrasting risk factors for heart failure in patients with and without history of myocardial infarction: data from HOMAGE and the UK Biobank.

Rastogi T, Ho F, Rossignol P, Merkling T, Butler J, Clark A Eur J Heart Fail. 2022; 24(6):976-984.

PMID: 35365899 PMC: 9542039. DOI: 10.1002/ejhf.2495.


References
1.
. [Diagnosis of adult chronic kidney failure]. Diabetes Metab. 2003; 29(3):315-24. DOI: 10.1016/s1262-3636(07)70043-5. View

2.
Sampson M, Drury P . Accurate estimation of glomerular filtration rate in diabetic nephropathy from age, body weight, and serum creatinine. Diabetes Care. 1992; 15(5):609-12. DOI: 10.2337/diacare.15.5.609. View

3.
Cartet-Farnier E, Goutelle-Audibert L, Maire P, De La Gastine B, Goutelle S . Implications of using the MDRD or CKD-EPI equation instead of the Cockcroft-Gault equation for estimating renal function and drug dosage adjustment in elderly patients. Fundam Clin Pharmacol. 2016; 31(1):110-119. DOI: 10.1111/fcp.12241. View

4.
Zamora E, Lupon J, Vila J, Urrutia A, De Antonio M, Sanz H . Estimated glomerular filtration rate and prognosis in heart failure: value of the Modification of Diet in Renal Disease Study-4, chronic kidney disease epidemiology collaboration, and cockroft-gault formulas. J Am Coll Cardiol. 2012; 59(19):1709-15. DOI: 10.1016/j.jacc.2011.11.066. View

5.
Uno H, Tian L, Cai T, Kohane I, Wei L . A unified inference procedure for a class of measures to assess improvement in risk prediction systems with survival data. Stat Med. 2012; 32(14):2430-42. PMC: 3734387. DOI: 10.1002/sim.5647. View