» Articles » PMID: 27822541

16S RRNA Amplicon Sequencing for Epidemiological Surveys of Bacteria in Wildlife

Abstract

The human impact on natural habitats is increasing the complexity of human-wildlife interactions and leading to the emergence of infectious diseases worldwide. Highly successful synanthropic wildlife species, such as rodents, will undoubtedly play an increasingly important role in transmitting zoonotic diseases. We investigated the potential for recent developments in 16S rRNA amplicon sequencing to facilitate the multiplexing of the large numbers of samples needed to improve our understanding of the risk of zoonotic disease transmission posed by urban rodents in West Africa. In addition to listing pathogenic bacteria in wild populations, as in other high-throughput sequencing (HTS) studies, our approach can estimate essential parameters for studies of zoonotic risk, such as prevalence and patterns of coinfection within individual hosts. However, the estimation of these parameters requires cleaning of the raw data to mitigate the biases generated by HTS methods. We present here an extensive review of these biases and of their consequences, and we propose a comprehensive trimming strategy for managing these biases. We demonstrated the application of this strategy using 711 commensal rodents, including 208 , 189 , 93 , and 221 , collected from 24 villages in Senegal. Seven major genera of pathogenic bacteria were detected in their spleens: , , , , , , and . , , , , and have never before been detected in West African rodents. Bacterial prevalence ranged from 0% to 90% of individuals per site, depending on the bacterial taxon, rodent species, and site considered, and 26% of rodents displayed coinfection. The 16S rRNA amplicon sequencing strategy presented here has the advantage over other molecular surveillance tools of dealing with a large spectrum of bacterial pathogens without requiring assumptions about their presence in the samples. This approach is therefore particularly suitable to continuous pathogen surveillance in the context of disease-monitoring programs. Several recent public health crises have shown that the surveillance of zoonotic agents in wildlife is important to prevent pandemic risks. High-throughput sequencing (HTS) technologies are potentially useful for this surveillance, but rigorous experimental processes are required for the use of these effective tools in such epidemiological contexts. In particular, HTS introduces biases into the raw data set that might lead to incorrect interpretations. We describe here a procedure for cleaning data before estimating reliable biological parameters, such as positivity, prevalence, and coinfection, using 16S rRNA amplicon sequencing on an Illumina MiSeq platform. This procedure, applied to 711 rodents collected in West Africa, detected several zoonotic bacterial species, including some at high prevalence, despite their never before having been reported for West Africa. In the future, this approach could be adapted for the monitoring of other microbes such as protists, fungi, and even viruses.

Citing Articles

A Multimarker Approach to Identify Microbial Bioindicators for Coral Reef Health Monitoring-Case Study in La Réunion Island.

Stenger P, Tribollet A, Guilhaumon F, Cuet P, Pennober G, Jourand P Microb Ecol. 2025; 87(1):179.

PMID: 39870904 PMC: 11772467. DOI: 10.1007/s00248-025-02495-3.


Advancing biomonitoring of eDNA studies with the Anaconda R package: Integrating soil and One Health perspectives in the face of evolving traditional agriculture practices.

Stenger P, Leopold A, Dinh K, Mournet P, Robert N, Drouin J PLoS One. 2025; 20(1):e0311986.

PMID: 39821144 PMC: 11737689. DOI: 10.1371/journal.pone.0311986.


Characterization of the Blood Bacterial Microbiota in Lowland Tapirs (), a Vulnerable Species in Brazil.

Mongruel A, Medici E, Machado R, Clay K, Andre M Microorganisms. 2024; 12(11).

PMID: 39597659 PMC: 11596849. DOI: 10.3390/microorganisms12112270.


Exploring the potential effects of forest urbanization on the interplay between small mammal communities and their gut microbiota.

Bouilloud M, Galan M, Pradel J, Loiseau A, Ferrero J, Gallet R Anim Microbiome. 2024; 6(1):16.

PMID: 38528597 PMC: 10964555. DOI: 10.1186/s42523-024-00301-y.


Recovering high-quality bacterial genomes from cross-contaminated cultures: a case study of marine Vibrio campbellii.

Orel N, Fadeev E, Herndl G, Turk V, Tinta T BMC Genomics. 2024; 25(1):146.

PMID: 38321410 PMC: 10845552. DOI: 10.1186/s12864-024-10062-2.


References
1.
Kuczynski J, Lauber C, Walters W, Parfrey L, Clemente J, Gevers D . Experimental and analytical tools for studying the human microbiome. Nat Rev Genet. 2011; 13(1):47-58. PMC: 5119550. DOI: 10.1038/nrg3129. View

2.
Taylor L, Latham S, Woolhouse M . Risk factors for human disease emergence. Philos Trans R Soc Lond B Biol Sci. 2001; 356(1411):983-9. PMC: 1088493. DOI: 10.1098/rstb.2001.0888. View

3.
Carpi G, Cagnacci F, Wittekindt N, Zhao F, Qi J, Tomsho L . Metagenomic profile of the bacterial communities associated with Ixodes ricinus ticks. PLoS One. 2011; 6(10):e25604. PMC: 3192763. DOI: 10.1371/journal.pone.0025604. View

4.
Pitcher D, Nicholas R . Mycoplasma host specificity: fact or fiction?. Vet J. 2005; 170(3):300-6. DOI: 10.1016/j.tvjl.2004.08.011. View

5.
Walters W, Hyde E, Berg-Lyons D, Ackermann G, Humphrey G, Parada A . Improved Bacterial 16S rRNA Gene (V4 and V4-5) and Fungal Internal Transcribed Spacer Marker Gene Primers for Microbial Community Surveys. mSystems. 2016; 1(1). PMC: 5069754. DOI: 10.1128/mSystems.00009-15. View