» Articles » PMID: 27821579

Cross-Modal Attention Effects in the Vestibular Cortex During Attentive Tracking of Moving Objects

Overview
Journal J Neurosci
Specialty Neurology
Date 2016 Nov 9
PMID 27821579
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

Significance Statement: In this study we investigate cross-modal attention effects in the human vestibular cortex. We applied the visual multiple-object tracking task because it is known to evoke attentional load effects on neural activity in visual motion-processing and attention-processing areas. Here we demonstrate a load-dependent effect of attention on the activation in the vestibular cortex, despite constant visual motion stimulation. We find that activity in the parietoinsular vestibular cortex is more strongly suppressed the greater the attentional load on the visual tracking task. These findings suggest cross-modal attentional modulation in the vestibular cortex.

Citing Articles

Egomotion-related visual areas respond to goal-directed movements.

Bellagamba M, Sulpizio V, Fattori P, Galati G, Galletti C, Maltempo T Brain Struct Funct. 2022; 227(7):2313-2328.

PMID: 35763171 DOI: 10.1007/s00429-022-02523-9.


The human vestibular cortex: functional anatomy of OP2, its connectivity and the effect of vestibular disease.

Ibitoye R, Mallas E, Bourke N, Kaski D, Bronstein A, Sharp D Cereb Cortex. 2022; 33(3):567-582.

PMID: 35235642 PMC: 9890474. DOI: 10.1093/cercor/bhac085.


Beyond motion extrapolation: vestibular contribution to head-rotation-induced flash-lag effects.

He X, Bai J, Jiang Y, Zhang T, Bao M Psychol Res. 2022; 86(7):2083-2098.

PMID: 35098373 DOI: 10.1007/s00426-021-01638-8.


Associations Between Injury of the Parieto-Insular Vestibular Cortex and Changes in Motor Function According to the Recovery Process: Use of Diffusion Tensor Imaging.

Park S, Yeo S, Jang S, Cho I, Oh S Front Neurol. 2021; 12:740711.

PMID: 34819909 PMC: 8607691. DOI: 10.3389/fneur.2021.740711.


Vestibular-Evoked Cerebral Potentials.

Nakul E, Bartolomei F, Lopez C Front Neurol. 2021; 12:674100.

PMID: 34621231 PMC: 8490637. DOI: 10.3389/fneur.2021.674100.


References
1.
Sunaert S, Van Hecke P, Marchal G, Orban G . Motion-responsive regions of the human brain. Exp Brain Res. 1999; 127(4):355-70. DOI: 10.1007/s002210050804. View

2.
Kimmig H, Greenlee M, Gondan M, Schira M, Kassubek J, Mergner T . Relationship between saccadic eye movements and cortical activity as measured by fMRI: quantitative and qualitative aspects. Exp Brain Res. 2001; 141(2):184-94. DOI: 10.1007/s002210100844. View

3.
Culham J, Cavanagh P, Kanwisher N . Attention response functions: characterizing brain areas using fMRI activation during parametric variations of attentional load. Neuron. 2001; 32(4):737-45. DOI: 10.1016/s0896-6273(01)00499-8. View

4.
Jovicich J, Peters R, Koch C, Braun J, Chang L, Ernst T . Brain areas specific for attentional load in a motion-tracking task. J Cogn Neurosci. 2002; 13(8):1048-58. DOI: 10.1162/089892901753294347. View

5.
Deutschlander A, Bense S, Stephan T, Schwaiger M, Brandt T, Dieterich M . Sensory system interactions during simultaneous vestibular and visual stimulation in PET. Hum Brain Mapp. 2002; 16(2):92-103. PMC: 6871812. DOI: 10.1002/hbm.10030. View