» Articles » PMID: 27808271

TiO Nanotubes Wrapped with Reduced Graphene Oxide As a High-performance Anode Material for Lithium-ion Batteries

Overview
Journal Sci Rep
Specialty Science
Date 2016 Nov 4
PMID 27808271
Citations 3
Authors
Affiliations
Soon will be listed here.
Abstract

Through electrostatic interaction and high-temperature reduction methods, rGO was closely coated onto the surface of TiO nanotubes. Even at a high temperature of 700 °C, the nanotube morphology of TiO (anatase) was preserved because of the assistance of rGO, which provides a framework that prevents the tubes from breaking into particles and undergoing a phase transformation. The rGO/TiO nanotubes deliver a high capacity (263 mAh g at the end of 100 cycles at 0.1 A g), excellent rate performance (151 mAh g at 2 A g and 102 mAh g at 5 A g), and good cycle stability (206 mAh g after 500 cycles at 0.5 A g). These characteristics arise from the GO/TiO nanotubes' advanced structure. First, the closely coated rGO and Ti in the tubes give rise to a high electro-conductivity of the nanotubes. Additionally, the Li ions can rapidly transfer into the electrode via the nanotubes' empty inner diameter and short tube wall.

Citing Articles

Boosting Ultra-Fast Charge Battery Performance: Filling Porous nanoLiTiO Particles with 3D Network of N-doped Carbons.

Daigle J, Asakawa Y, Beaupre M, Gariepy V, Vieillette R, Laul D Sci Rep. 2019; 9(1):16871.

PMID: 31727933 PMC: 6856524. DOI: 10.1038/s41598-019-53195-1.


Synthesis of Reduced Graphene Oxide/Titanium Dioxide Nanotubes (rGO/TNT) Composites as an Electrical Double Layer Capacitor.

Lazarte J, Dipasupil R, Pasco G, Eusebio R, Orbecido A, Doong R Nanomaterials (Basel). 2018; 8(11).

PMID: 30424022 PMC: 6265885. DOI: 10.3390/nano8110934.


Controllable Synthesis of TiO@FeO Core-Shell Nanotube Arrays with Double-Wall Coating as Superb Lithium-Ion Battery Anodes.

Zhong Y, Ma Y, Guo Q, Liu J, Wang Y, Yang M Sci Rep. 2017; 7:40927.

PMID: 28098237 PMC: 5241879. DOI: 10.1038/srep40927.

References
1.
Chen J, Tan Y, Li C, Cheah Y, Luan D, Madhavi S . Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. J Am Chem Soc. 2010; 132(17):6124-30. DOI: 10.1021/ja100102y. View

2.
Etacheri V, Yourey J, Bartlett B . Chemically bonded TiO2-bronze nanosheet/reduced graphene oxide hybrid for high-power lithium ion batteries. ACS Nano. 2014; 8(2):1491-9. DOI: 10.1021/nn405534r. View

3.
Maier J . Thermodynamics of electrochemical lithium storage. Angew Chem Int Ed Engl. 2013; 52(19):4998-5026. DOI: 10.1002/anie.201205569. View

4.
Ren Y, Zhang J, Liu Y, Li H, Wei H, Li B . Synthesis and superior anode performances of TiO2-carbon-rGO composites in lithium-ion batteries. ACS Appl Mater Interfaces. 2012; 4(9):4776-80. DOI: 10.1021/am301131h. View

5.
Wang H, Wang G, Ling Y, Lepert M, Wang C, Zhang J . Photoelectrochemical study of oxygen deficient TiO2 nanowire arrays with CdS quantum dot sensitization. Nanoscale. 2012; 4(5):1463-6. DOI: 10.1039/c2nr11278g. View