» Articles » PMID: 2779294

Effect of Radial Position on Volume Measurements Using the Conductance Catheter

Overview
Publisher Springer
Date 1989 Jan 1
PMID 2779294
Citations 3
Authors
Affiliations
Soon will be listed here.
Abstract

A finite-difference computer model has been used to determine the potential distributions arising from a dipole current source aligned parallel to the axis of bounding cylinders. The radial position of this source had large and nonlinear influence on the potentials along the dipole axis. The accuracy of the computer simulation was established from comparison with an analytic solution of a simple geometry. Measurements using a conductance catheter in saline-filled cylinders also demonstrated the dependence of the conductance on the radial position. The dependence of the potential distribution on the radial position of the dipole places limits on the ultimate accuracy of the conductance catheter technique when used for the measurement of ventricular volume. Radial movement of the catheter within the ventricular cavity, resulting in changes in the potential distribution, could explain some artefacts that appear on volume recordings from the conductance catheter.

Citing Articles

The compliance of the porcine pulmonary artery depends on pressure and heart rate.

Kornet L, Jansen J, Nijenhuis F, Langewouters G, Versprille A J Physiol. 1998; 512 ( Pt 3):917-26.

PMID: 9769432 PMC: 2231242. DOI: 10.1111/j.1469-7793.1998.917bd.x.


In vitro and finite-element model investigation of the conductance technique for measurement of aortic segmental volume.

Hettrick D, Battocletti J, Ackmann J, Linehan J, Warltier D Ann Biomed Eng. 1996; 24(6):675-84.

PMID: 8923987 DOI: 10.1007/BF02684180.


Simulation method for cardiac stroke volume estimation by intracardiac electrical impedance measurement.

Barak C, Leviatan Y, Inbar G, Hoekstein K Med Biol Eng Comput. 1992; 30(5):473-80.

PMID: 1293437 DOI: 10.1007/BF02457824.

References
1.
Heringa A, Stegeman D, Uijen G, de Weerd J . Solution methods of electrical field problems in physiology. IEEE Trans Biomed Eng. 1982; 29(1):34-42. DOI: 10.1109/TBME.1982.324961. View

2.
Salo R, Wallner T, Pederson B . Measurement of ventricular volume by intracardiac impedance: theoretical and empirical approaches. IEEE Trans Biomed Eng. 1986; 33(2):189-95. DOI: 10.1109/TBME.1986.325890. View

3.
Woodard J, Bertram C, Gow B . Right ventricular volumetry by catheter measurement of conductance. Pacing Clin Electrophysiol. 1987; 10(4 Pt 1):862-70. DOI: 10.1111/j.1540-8159.1987.tb06043.x. View

4.
McKay R, Spears J, AROESTY J, Baim D, Royal H, Heller G . Instantaneous measurement of left and right ventricular stroke volume and pressure-volume relationships with an impedance catheter. Circulation. 1984; 69(4):703-10. DOI: 10.1161/01.cir.69.4.703. View

5.
Spinelli J, Valentinuzzi M . Conductivity and geometrical factors affecting volume measurements with an impedancimetric catheter. Med Biol Eng Comput. 1986; 24(5):460-4. DOI: 10.1007/BF02443959. View