» Articles » PMID: 27784534

Toward Understanding Thalamocortical Dysfunction in Schizophrenia Through Computational Models of Neural Circuit Dynamics

Overview
Journal Schizophr Res
Specialty Psychiatry
Date 2016 Oct 28
PMID 27784534
Citations 31
Authors
Affiliations
Soon will be listed here.
Abstract

The thalamus is implicated in the neuropathology of schizophrenia, and multiple modalities of noninvasive neuroimaging provide converging evidence for altered thalamocortical dynamics in the disorder, such as functional connectivity and oscillatory power. However, it remains a challenge to link these neuroimaging biomarkers to underlying neural circuit mechanisms. One potential path forward is a "Computational Psychiatry" approach that leverages computational models of neural circuits to make predictions for the dynamical impact dynamical impact on specific thalamic disruptions hypothesized to occur in the pathophysiology of schizophrenia. Here we review biophysically-based computational models of neural circuit dynamics for large-scale resting-state networks which have been applied to schizophrenia, and for thalamic oscillations. As a key aspect of thalamocortical dysconnectivity in schizophrenia is its regional specificity, it is important to consider potential sources of intrinsic heterogeneity of cellular and circuit properties across cortical and thalamic structures.

Citing Articles

Increasing the Construct Validity of Computational Phenotypes of Mental Illness Through Active Inference and Brain Imaging.

Limongi R, Skelton A, Tzianas L, Silva A Brain Sci. 2025; 14(12.

PMID: 39766477 PMC: 11674655. DOI: 10.3390/brainsci14121278.


Auditory and Visual Thalamocortical Connectivity Alterations in Unmedicated People with Schizophrenia: An Individualized Sensory Thalamic Localization and Resting-State Functional Connectivity Study.

Williams J, Tubiolo P, Gil R, Zheng Z, Silver-Frankel E, Haubold N medRxiv. 2025; .

PMID: 39763546 PMC: 11702713. DOI: 10.1101/2024.12.18.24319241.


Functional Connectivity Biomarkers in Schizophrenia.

Howell A, Anticevic A Adv Neurobiol. 2024; 40:237-283.

PMID: 39562448 DOI: 10.1007/978-3-031-69491-2_10.


Neurostructural changes in schizophrenia and treatment-resistance: a narrative review.

Paul T, See J, Vijayakumar V, Njideaka-Kevin T, Loh H, Lee V Psychoradiology. 2024; 4:kkae015.

PMID: 39399446 PMC: 11467815. DOI: 10.1093/psyrad/kkae015.


GABAergic dysfunction in postmortem dorsolateral prefrontal cortex: implications for cognitive deficits in schizophrenia and affective disorders.

Hughes H, Brady L, Schoonover K Front Cell Neurosci. 2024; 18:1440834.

PMID: 39381500 PMC: 11458443. DOI: 10.3389/fncel.2024.1440834.


References
1.
Hansen E, Battaglia D, Spiegler A, Deco G, Jirsa V . Functional connectivity dynamics: modeling the switching behavior of the resting state. Neuroimage. 2014; 105:525-35. DOI: 10.1016/j.neuroimage.2014.11.001. View

2.
Kotermanski S, Johnson J . Mg2+ imparts NMDA receptor subtype selectivity to the Alzheimer's drug memantine. J Neurosci. 2009; 29(9):2774-9. PMC: 2679254. DOI: 10.1523/JNEUROSCI.3703-08.2009. View

3.
Deco G, Ponce-Alvarez A, Hagmann P, Luca Romani G, Mantini D, Corbetta M . How local excitation-inhibition ratio impacts the whole brain dynamics. J Neurosci. 2014; 34(23):7886-98. PMC: 4044249. DOI: 10.1523/JNEUROSCI.5068-13.2014. View

4.
Adams R, Stephan K, Brown H, Frith C, Friston K . The computational anatomy of psychosis. Front Psychiatry. 2013; 4:47. PMC: 3667557. DOI: 10.3389/fpsyt.2013.00047. View

5.
Destexhe A, Bal T, McCormick D, Sejnowski T . Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. J Neurophysiol. 1996; 76(3):2049-70. DOI: 10.1152/jn.1996.76.3.2049. View