» Articles » PMID: 27749844

Prospective Functional Classification of All Possible Missense Variants in PPARG

Abstract

Clinical exome sequencing routinely identifies missense variants in disease-related genes, but functional characterization is rarely undertaken, leading to diagnostic uncertainty. For example, mutations in PPARG cause Mendelian lipodystrophy and increase risk of type 2 diabetes (T2D). Although approximately 1 in 500 people harbor missense variants in PPARG, most are of unknown consequence. To prospectively characterize PPARγ variants, we used highly parallel oligonucleotide synthesis to construct a library encoding all 9,595 possible single-amino acid substitutions. We developed a pooled functional assay in human macrophages, experimentally evaluated all protein variants, and used the experimental data to train a variant classifier by supervised machine learning. When applied to 55 new missense variants identified in population-based and clinical sequencing, the classifier annotated 6 variants as pathogenic; these were subsequently validated by single-variant assays. Saturation mutagenesis and prospective experimental characterization can support immediate diagnostic interpretation of newly discovered missense variants in disease-related genes.

Citing Articles

Multiplex, multimodal mapping of variant effects in secreted proteins.

Popp N, Powell R, Wheelock M, Holmes K, Zapp B, Sheldon K bioRxiv. 2025; .

PMID: 39975210 PMC: 11838247. DOI: 10.1101/2024.04.01.587474.


MaveDB 2024: a curated community database with over seven million variant effects from multiplexed functional assays.

Rubin A, Stone J, Bianchi A, Capodanno B, Da E, Dias M Genome Biol. 2025; 26(1):13.

PMID: 39838450 PMC: 11753097. DOI: 10.1186/s13059-025-03476-y.


Rare variant associations with birth weight identify genes involved in adipose tissue regulation, placental function and insulin-like growth factor signalling.

Kentistou K, Lim B, Kaisinger L, Steinthorsdottir V, Sharp L, Patel K Nat Commun. 2025; 16(1):648.

PMID: 39809772 PMC: 11733218. DOI: 10.1038/s41467-024-55761-2.


Peroxisome proliferator-activated receptor gamma mutation in familial partial lipodystrophy type three: A case report and review of literature.

Wu C, Liu H, Tu L, Hu J World J Diabetes. 2024; 15(12):2360-2369.

PMID: 39676812 PMC: 11580599. DOI: 10.4239/wjd.v15.i12.2360.


Familial partial lipodystrophy resulting from loss-of-function PPARγ pathogenic variants: phenotypic, clinical, and genetic features.

Soares R, da Silva M, de Melo Campos J, Lima J Front Endocrinol (Lausanne). 2024; 15:1394102.

PMID: 39398333 PMC: 11466747. DOI: 10.3389/fendo.2024.1394102.


References
1.
Yu S, Matsusue K, Kashireddy P, Cao W, Yeldandi V, Yeldandi A . Adipocyte-specific gene expression and adipogenic steatosis in the mouse liver due to peroxisome proliferator-activated receptor gamma1 (PPARgamma1) overexpression. J Biol Chem. 2002; 278(1):498-505. DOI: 10.1074/jbc.M210062200. View

2.
Majewski J, Schwartzentruber J, Lalonde E, Montpetit A, Jabado N . What can exome sequencing do for you?. J Med Genet. 2011; 48(9):580-9. DOI: 10.1136/jmedgenet-2011-100223. View

3.
Agostini M, Schoenmakers E, Mitchell C, Szatmari I, Savage D, Smith A . Non-DNA binding, dominant-negative, human PPARgamma mutations cause lipodystrophic insulin resistance. Cell Metab. 2006; 4(4):303-11. PMC: 1821092. DOI: 10.1016/j.cmet.2006.09.003. View

4.
Stitziel N, Won H, Morrison A, Peloso G, Do R, Lange L . Inactivating mutations in NPC1L1 and protection from coronary heart disease. N Engl J Med. 2014; 371(22):2072-82. PMC: 4335708. DOI: 10.1056/NEJMoa1405386. View

5.
Tennessen J, Bigham A, OConnor T, Fu W, Kenny E, Gravel S . Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science. 2012; 337(6090):64-9. PMC: 3708544. DOI: 10.1126/science.1219240. View