» Articles » PMID: 27748023

Precision Medicine in Pediatric Oncology: Lessons Learned and Next Steps

Overview
Date 2016 Oct 18
PMID 27748023
Citations 38
Authors
Affiliations
Soon will be listed here.
Abstract

The maturation of genomic technologies has enabled new discoveries in disease pathogenesis as well as new approaches to patient care. In pediatric oncology, patients may now receive individualized genomic analysis to identify molecular aberrations of relevance for diagnosis and/or treatment. In this context, several recent clinical studies have begun to explore the feasibility and utility of genomics-driven precision medicine. Here, we review the major developments in this field, discuss current limitations, and explore aspects of the clinical implementation of precision medicine, which lack consensus. Lastly, we discuss ongoing scientific efforts in this arena, which may yield future clinical applications.

Citing Articles

The childhood cancer data initiative: enabling data sharing to drive research advances and transform pediatric cancer diagnosis and treatment.

Jagu S, Guidry Auvil J, Reaman G Curr Opin Pediatr. 2024; 37(1):42-47.

PMID: 39699099 PMC: 11658014. DOI: 10.1097/MOP.0000000000001422.


The economic costs of precision medicine for clinical translational research among children with high-risk cancer.

Owens C, Tan O, Kuroiwa-Trzmielina J, Shrestha R, OBrien T, Tyrrell V NPJ Precis Oncol. 2024; 8(1):224.

PMID: 39367129 PMC: 11452525. DOI: 10.1038/s41698-024-00711-w.


Translating Precision Health for Pediatrics: A Scoping Review.

Subasri M, Cressman C, Arje D, Schreyer L, Cooper E, Patel K Children (Basel). 2023; 10(5).

PMID: 37238445 PMC: 10217253. DOI: 10.3390/children10050897.


Recent Advances with Precision Medicine Treatment for Breast Cancer including Triple-Negative Sub-Type.

Subhan M, Parveen F, Shah H, Yalamarty S, Ataide J, Torchilin V Cancers (Basel). 2023; 15(8).

PMID: 37190133 PMC: 10137302. DOI: 10.3390/cancers15082204.


Utilization of Genomic Tumor Profiling in Pediatric Liquid Tumors: A Clinical Series.

Sharma I, Son M, Motamedi S, Hoeft A, Teller C, Hamby T Hematol Rep. 2023; 15(2):256-265.

PMID: 37092520 PMC: 10123750. DOI: 10.3390/hematolrep15020026.


References
1.
McNeil C . NCI-MATCH launch highlights new trial design in precision-medicine era. J Natl Cancer Inst. 2015; 107(7). DOI: 10.1093/jnci/djv193. View

2.
Scollon S, Bergstrom K, Kerstein R, Wang T, Hilsenbeck S, Ramamurthy U . Obtaining informed consent for clinical tumor and germline exome sequencing of newly diagnosed childhood cancer patients. Genome Med. 2014; 6(9):69. PMC: 4195891. DOI: 10.1186/s13073-014-0069-3. View

3.
Li S, Cheuk A, Shern J, Song Y, Hurd L, Liao H . Targeting wild-type and mutationally activated FGFR4 in rhabdomyosarcoma with the inhibitor ponatinib (AP24534). PLoS One. 2013; 8(10):e76551. PMC: 3790700. DOI: 10.1371/journal.pone.0076551. View

4.
Sievert A, Lang S, Boucher K, Madsen P, Slaunwhite E, Choudhari N . Paradoxical activation and RAF inhibitor resistance of BRAF protein kinase fusions characterizing pediatric astrocytomas. Proc Natl Acad Sci U S A. 2013; 110(15):5957-62. PMC: 3625308. DOI: 10.1073/pnas.1219232110. View

5.
Chen X, Stewart E, Shelat A, Qu C, Bahrami A, Hatley M . Targeting oxidative stress in embryonal rhabdomyosarcoma. Cancer Cell. 2013; 24(6):710-24. PMC: 3904731. DOI: 10.1016/j.ccr.2013.11.002. View