» Articles » PMID: 27733698

Superensemble Forecasts of Dengue Outbreaks

Overview
Date 2016 Oct 14
PMID 27733698
Citations 45
Authors
Affiliations
Soon will be listed here.
Abstract

In recent years, a number of systems capable of predicting future infectious disease incidence have been developed. As more of these systems are operationalized, it is important that the forecasts generated by these different approaches be formally reconciled so that individual forecast error and bias are reduced. Here we present a first example of such multi-system, or superensemble, forecast. We develop three distinct systems for predicting dengue, which are applied retrospectively to forecast outbreak characteristics in San Juan, Puerto Rico. We then use Bayesian averaging methods to combine the predictions from these systems and create superensemble forecasts. We demonstrate that on average, the superensemble approach produces more accurate forecasts than those made from any of the individual forecasting systems.

Citing Articles

Post-processing and weighted combination of infectious disease nowcasts.

Amaral A, Wolffram D, Moraga P, Bracher J PLoS Comput Biol. 2025; 21(3):e1012836.

PMID: 40029911 PMC: 11902281. DOI: 10.1371/journal.pcbi.1012836.


Advancing adoptability and sustainability of digital prediction tools for climate-sensitive infectious disease prevention and control.

Phung D, Colon-Gonzalez F, Weinberger D, Bui V, Nghiem S, Chu C Nat Commun. 2025; 16(1):1644.

PMID: 39952939 PMC: 11829011. DOI: 10.1038/s41467-025-56826-6.


PHENOMENOLOGICAL FORECASTING OF DISEASE INCIDENCE USING HETEROSKEDASTIC GAUSSIAN PROCESSES: A DENGUE CASE STUDY.

Johnson L, Gramacy R, Cohen J, Mordecai E, Murdock C, Rohr J Ann Appl Stat. 2024; 12(1):27-66.

PMID: 38623158 PMC: 11017302. DOI: 10.1214/17-aoas1090.


Comparison of combination methods to create calibrated ensemble forecasts for seasonal influenza in the U.S.

Wattanachit N, Ray E, McAndrew T, Reich N Stat Med. 2023; 42(26):4696-4712.

PMID: 37648218 PMC: 10710272. DOI: 10.1002/sim.9884.


PICTUREE-Aedes: A Web Application for Dengue Data Visualization and Case Prediction.

Yi C, Vajdi A, Ferdousi T, Cohnstaedt L, Scoglio C Pathogens. 2023; 12(6).

PMID: 37375461 PMC: 10301560. DOI: 10.3390/pathogens12060771.


References
1.
Ong J, Chen M, Cook A, Lee H, Lee V, Pin Lin R . Real-time epidemic monitoring and forecasting of H1N1-2009 using influenza-like illness from general practice and family doctor clinics in Singapore. PLoS One. 2010; 5(4):e10036. PMC: 2854682. DOI: 10.1371/journal.pone.0010036. View

2.
Silawan T, Singhasivanon P, Kaewkungwal J, Nimmanitya S, Suwonkerd W . Temporal patterns and forecast of dengue infection in Northeastern Thailand. Southeast Asian J Trop Med Public Health. 2008; 39(1):90-8. View

3.
Halasa Y, Shepard D, Zeng W . Economic cost of dengue in Puerto Rico. Am J Trop Med Hyg. 2012; 86(5):745-752. PMC: 3335675. DOI: 10.4269/ajtmh.2012.11-0784. View

4.
Yang W, Karspeck A, Shaman J . Comparison of filtering methods for the modeling and retrospective forecasting of influenza epidemics. PLoS Comput Biol. 2014; 10(4):e1003583. PMC: 3998879. DOI: 10.1371/journal.pcbi.1003583. View

5.
Bhatt S, Gething P, Brady O, Messina J, Farlow A, Moyes C . The global distribution and burden of dengue. Nature. 2013; 496(7446):504-7. PMC: 3651993. DOI: 10.1038/nature12060. View