A Systems Biology Approach to Defining Regulatory Mechanisms for Cartilage and Tendon Cell Phenotypes
Affiliations
Phenotypic plasticity of adult somatic cells has provided emerging avenues for the development of regenerative therapeutics. In musculoskeletal biology the mechanistic regulatory networks of genes governing the phenotypic plasticity of cartilage and tendon cells has not been considered systematically. Additionally, a lack of strategies to effectively reproduce in vitro functional models of cartilage and tendon is retarding progress in this field. De- and redifferentiation represent phenotypic transitions that may contribute to loss of function in ageing musculoskeletal tissues. Applying a systems biology network analysis approach to global gene expression profiles derived from common in vitro culture systems (monolayer and three-dimensional cultures) this study demonstrates common regulatory mechanisms governing de- and redifferentiation transitions in cartilage and tendon cells. Furthermore, evidence of convergence of gene expression profiles during monolayer expansion of cartilage and tendon cells, and the expression of key developmental markers, challenges the physiological relevance of this culture system. The study also suggests that oxidative stress and PI3K signalling pathways are key modulators of in vitro phenotypes for cells of musculoskeletal origin.
Effects of adipose allograft matrix on viability of humeral head cartilage and rotator cuff tendon.
Persons A, Baria M, Rauck R, Barker T, Belacic Z, Neginhal S BMC Musculoskelet Disord. 2025; 26(1):54.
PMID: 39815205 PMC: 11734559. DOI: 10.1186/s12891-025-08302-x.
Predictive Neuromarker Patterns for Calcification Metaplasia in Early Tendon Healing.
Faydaver M, Festinese V, Di Giacinto O, El Khatib M, Raspa M, Scavizzi F Vet Sci. 2024; 11(9).
PMID: 39330820 PMC: 11435825. DOI: 10.3390/vetsci11090441.
in Skeletal Muscle: A Novel Regulator?.
Kim C, Hadjiargyrou M Genes (Basel). 2024; 15(7).
PMID: 39062608 PMC: 11276411. DOI: 10.3390/genes15070829.
Soukup R, Gerner I, Mohr T, Gueltekin S, Grillari J, Jenner F Int J Mol Sci. 2023; 24(13).
PMID: 37446034 PMC: 10342101. DOI: 10.3390/ijms241310857.
Chondrocyte De-Differentiation: Biophysical Cues to Nuclear Alterations.
Al-Maslamani N, Oldershaw R, Tew S, Curran J, DHooghe P, Yamamoto K Cells. 2022; 11(24).
PMID: 36552775 PMC: 9777101. DOI: 10.3390/cells11244011.