» Articles » PMID: 27667975

Regulation of Cardiac Remodeling by Cardiac Na(+)/K(+)-ATPase Isoforms

Overview
Journal Front Physiol
Date 2016 Sep 27
PMID 27667975
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

Cardiac remodeling occurs after cardiac pressure/volume overload or myocardial injury during the development of heart failure and is a determinant of heart failure. Preventing or reversing remodeling is a goal of heart failure therapy. Human cardiomyocyte Na(+)/K(+)-ATPase has multiple α isoforms (1-3). The expression of the α subunit of the Na(+)/K(+)-ATPase is often altered in hypertrophic and failing hearts. The mechanisms are unclear. There are limited data from human cardiomyocytes. Abundant evidences from rodents show that Na(+)/K(+)-ATPase regulates cardiac contractility, cell signaling, hypertrophy and fibrosis. The α1 isoform of the Na(+)/K(+)-ATPase is the ubiquitous isoform and possesses both pumping and signaling functions. The α2 isoform of the Na(+)/K(+)-ATPase regulates intracellular Ca(2+) signaling, contractility and pathological hypertrophy. The α3 isoform of the Na(+)/K(+)-ATPase may also be a target for cardiac hypertrophy. Restoration of cardiac Na(+)/K(+)-ATPase expression may be an effective approach for prevention of cardiac remodeling. In this article, we will overview: (1) the distribution and function of isoform specific Na(+)/K(+)-ATPase in the cardiomyocytes. (2) the role of cardiac Na(+)/K(+)-ATPase in the regulation of cell signaling, contractility, cardiac hypertrophy and fibrosis in vitro and in vivo. Selective targeting of cardiac Na(+)/K(+)-ATPase isoform may offer a new target for the prevention of cardiac remodeling.

Citing Articles

The Na/K-ATPase role as a signal transducer in lung inflammation.

Silva A, de Souza E Souza K, Souza T, Younes-Ibrahim M, Burth P, de Castro Faria Neto H Front Immunol. 2024; 14:1287512.

PMID: 38299144 PMC: 10827986. DOI: 10.3389/fimmu.2023.1287512.


The Na/K-ATPase α1/Src Signaling Axis Regulates Mitochondrial Metabolic Function and Redox Signaling in Human iPSC-Derived Cardiomyocytes.

Cai L, Pessoa M, Gao Y, Strause S, Banerjee M, Tian J Biomedicines. 2023; 11(12).

PMID: 38137428 PMC: 10740578. DOI: 10.3390/biomedicines11123207.


The Na/K-ATPase: A potential therapeutic target in cardiometabolic diseases.

Obradovic M, Sudar-Milovanovic E, Gluvic Z, Banjac K, Rizzo M, Isenovic E Front Endocrinol (Lausanne). 2023; 14:1150171.

PMID: 36926029 PMC: 10011626. DOI: 10.3389/fendo.2023.1150171.


Mechanism-based targeting of cardiac arrhythmias by phytochemicals and medicinal herbs: A comprehensive review of preclinical and clinical evidence.

Soltani D, Azizi B, Rahimi R, Talasaz A, Rezaeizadeh H, Vasheghani-Farahani A Front Cardiovasc Med. 2022; 9:990063.

PMID: 36247473 PMC: 9559844. DOI: 10.3389/fcvm.2022.990063.


Regulation of Cardiac Contractility by the Alpha 2 Subunit of the Na/K-ATPase.

Skogestad J, Aronsen J Front Physiol. 2022; 13:827334.

PMID: 35812308 PMC: 9258780. DOI: 10.3389/fphys.2022.827334.


References
1.
Mohammadi K, Kometiani P, Xie Z, Askari A . Role of protein kinase C in the signal pathways that link Na+/K+-ATPase to ERK1/2. J Biol Chem. 2001; 276(45):42050-6. DOI: 10.1074/jbc.M107892200. View

2.
Huang B, Leenen F . Brain renin-angiotensin system and ouabain-induced sympathetic hyperactivity and hypertension in Wistar rats. Hypertension. 1999; 34(1):107-12. DOI: 10.1161/01.hyp.34.1.107. View

3.
Hamlyn J, Blaustein M, Bova S, DUCHARME D, Harris D, Mandel F . Identification and characterization of a ouabain-like compound from human plasma. Proc Natl Acad Sci U S A. 1991; 88(14):6259-63. PMC: 52062. DOI: 10.1073/pnas.88.14.6259. View

4.
McDonough A, Geering K, Farley R . The sodium pump needs its beta subunit. FASEB J. 1990; 4(6):1598-605. DOI: 10.1096/fasebj.4.6.2156741. View

5.
Haas M, Askari A, Xie Z . Involvement of Src and epidermal growth factor receptor in the signal-transducing function of Na+/K+-ATPase. J Biol Chem. 2000; 275(36):27832-7. DOI: 10.1074/jbc.M002951200. View