» Articles » PMID: 27667731

Bayesian Variable Selection and Estimation in Semiparametric Joint Models of Multivariate Longitudinal and Survival Data

Overview
Journal Biom J
Specialty Public Health
Date 2016 Sep 27
PMID 27667731
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

This paper presents a novel semiparametric joint model for multivariate longitudinal and survival data (SJMLS) by relaxing the normality assumption of the longitudinal outcomes, leaving the baseline hazard functions unspecified and allowing the history of the longitudinal response having an effect on the risk of dropout. Using Bayesian penalized splines to approximate the unspecified baseline hazard function and combining the Gibbs sampler and the Metropolis-Hastings algorithm, we propose a Bayesian Lasso (BLasso) method to simultaneously estimate unknown parameters and select important covariates in SJMLS. Simulation studies are conducted to investigate the finite sample performance of the proposed techniques. An example from the International Breast Cancer Study Group (IBCSG) is used to illustrate the proposed methodologies.

Citing Articles

Bayesian variable selection in joint modeling of longitudinal data and interval-censored failure time data.

Mao Y, Wang L, Lin X, Sui X Res Sq. 2024; .

PMID: 38699353 PMC: 11065089. DOI: 10.21203/rs.3.rs-4254893/v1.


Bayesian Variable Selection and Estimation in Semiparametric Simplex Mixed-Effects Models with Longitudinal Proportional Data.

Tang A, Duan X, Zhao Y Entropy (Basel). 2023; 24(10).

PMID: 37420486 PMC: 9601372. DOI: 10.3390/e24101466.


Bayesian Joint Modeling of Multivariate Longitudinal and Survival Data With an Application to Diabetes Study.

Huang Y, Chen J, Xu L, Tang N Front Big Data. 2022; 5:812725.

PMID: 35574573 PMC: 9094046. DOI: 10.3389/fdata.2022.812725.


Bayesian joint modelling of longitudinal and time to event data: a methodological review.

Alsefri M, Sudell M, Garcia-Finana M, Kolamunnage-Dona R BMC Med Res Methodol. 2020; 20(1):94.

PMID: 32336264 PMC: 7183597. DOI: 10.1186/s12874-020-00976-2.