» Articles » PMID: 27665698

Facile Transformation of FeO/FeO Core-shell Nanocubes to FeO Via Magnetic Stimulation

Overview
Journal Sci Rep
Specialty Science
Date 2016 Sep 27
PMID 27665698
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Here, we propose the use of magnetic hyperthermia as a means to trigger the oxidation of FeO/FeO core-shell nanocubes to FeO phase. As a first relevant consequence, the specific absorption rate (SAR) of the initial core-shell nanocubes doubles after exposure to 25 cycles of alternating magnetic field stimulation. The improved SAR value was attributed to a gradual transformation of the FeO core to FeO, as evidenced by structural analysis including high resolution electron microscopy and Rietveld analysis of X-ray diffraction patterns. The magnetically oxidized nanocubes, having large and coherent FeO domains, reveal high saturation magnetization and behave superparamagnetically at room temperature. In comparison, the treatment of the same starting core-shell nanocubes by commonly used thermal annealing process renders a transformation to γ-FeO. In contrast to other thermal annealing processes, the method here presented has the advantage of promoting the oxidation at a macroscopic temperature below 37 °C. Using this soft oxidation process, we demonstrate that biotin-functionalized core-shell nanocubes can undergo a mild self-oxidation transformation without losing their functional molecular binding activity.

Citing Articles

Magnetic Hyperthermia in Glioblastoma Multiforme Treatment.

Manescu Paltanea V, Antoniac I, Paltanea G, Nemoianu I, Mohan A, Antoniac A Int J Mol Sci. 2024; 25(18).

PMID: 39337552 PMC: 11432100. DOI: 10.3390/ijms251810065.


Exploring the Enhancement of Exchange Bias in Innovative Core/Shell/Shell Structures: Synthesis and Magnetic Properties of Co-Oxide/Co and Co-Oxide/Co/Co-Oxide Inverted Nanostructures.

Ghoshani M, Mozaffari M, Acet M, Hosseini M, Vashaee D Nanomaterials (Basel). 2023; 13(5).

PMID: 36903758 PMC: 10005359. DOI: 10.3390/nano13050880.


Raman spectroscopy to unravel the magnetic properties of iron oxide nanocrystals for bio-related applications.

Testa-Anta M, Ramos-Docampo M, Comesana-Hermo M, Rivas-Murias B, Salgueirino V Nanoscale Adv. 2022; 1(6):2086-2103.

PMID: 36131987 PMC: 9418671. DOI: 10.1039/c9na00064j.


A Milestone in the Chemical Synthesis of FeO Nanoparticles: Unreported Bulklike Properties Lead to a Remarkable Magnetic Hyperthermia.

Castellanos-Rubio I, Arriortua O, Iglesias-Rojas D, Baron A, Rodrigo I, Marcano L Chem Mater. 2021; 33(22):8693-8704.

PMID: 34853492 PMC: 8619619. DOI: 10.1021/acs.chemmater.1c02654.


Large exchange bias in Cr substituted FeO nanoparticles with FeO subdomains.

Bulbucan C, Preger C, Kostanyan A, Jensen K, Kokkonen E, Piamonteze C Nanoscale. 2021; 13(37):15844-15852.

PMID: 34518859 PMC: 8485415. DOI: 10.1039/d1nr04614d.


References
1.
Park J, An K, Hwang Y, Park J, Noh H, Kim J . Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater. 2004; 3(12):891-5. DOI: 10.1038/nmat1251. View

2.
Moroz P, Jones S, Gray B . Magnetically mediated hyperthermia: current status and future directions. Int J Hyperthermia. 2002; 18(4):267-84. DOI: 10.1080/02656730110108785. View

3.
Sun X, Huls N, Sigdel A, Sun S . Tuning exchange bias in core/shell FeO/Fe3O4 nanoparticles. Nano Lett. 2011; 12(1):246-51. DOI: 10.1021/nl2034514. View

4.
Andreu I, Natividad E . Accuracy of available methods for quantifying the heat power generation of nanoparticles for magnetic hyperthermia. Int J Hyperthermia. 2013; 29(8):739-51. DOI: 10.3109/02656736.2013.826825. View

5.
Dias J, Moros M, Del Pino P, Rivera S, Grazu V, de la Fuente J . DNA as a molecular local thermal probe for the analysis of magnetic hyperthermia. Angew Chem Int Ed Engl. 2013; 52(44):11526-9. DOI: 10.1002/anie.201305835. View