» Articles » PMID: 27660636

Automated Fovea Detection in Spectral Domain Optical Coherence Tomography Scans of Exudative Macular Disease

Overview
Publisher Wiley
Specialty Radiology
Date 2016 Sep 24
PMID 27660636
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

In macular spectral domain optical coherence tomography (SD-OCT) volumes, detection of the foveal center is required for accurate and reproducible follow-up studies, structure function correlation, and measurement grid positioning. However, disease can cause severe obscuring or deformation of the fovea, thus presenting a major challenge in automated detection. We propose a fully automated fovea detection algorithm to extract the fovea position in SD-OCT volumes of eyes with exudative maculopathy. The fovea is classified into 3 main appearances to both specify the detection algorithm used and reduce computational complexity. Based on foveal type classification, the fovea position is computed based on retinal nerve fiber layer thickness. Mean absolute distance between system and clinical expert annotated fovea positions from a dataset comprised of 240 SD-OCT volumes was 162.3 µm in cystoid macular edema and 262 µm in nAMD. The presented method has cross-vendor functionality, while demonstrating accurate and reliable performance close to typical expert interobserver agreement. The automatically detected fovea positions may be used as landmarks for intra- and cross-patient registration and to create a joint reference frame for extraction of spatiotemporal features in "big data." Furthermore, reliable analyses of retinal thickness, as well as retinal structure function correlation, may be facilitated.

Citing Articles

Three-dimensional diabetic macular edema thickness maps based on fluid segmentation and fovea detection using deep learning.

Xu J, Zhou Y, Wei Q, Li K, Li Z, Yu T Int J Ophthalmol. 2022; 15(3):495-501.

PMID: 35310049 PMC: 8907057. DOI: 10.18240/ijo.2022.03.19.


Automated foveal location detection on spectral-domain optical coherence tomography in geographic atrophy patients.

Montesel A, Gigon A, Mosinska A, Apostolopoulos S, Ciller C, De Zanet S Graefes Arch Clin Exp Ophthalmol. 2022; 260(7):2261-2270.

PMID: 35044505 PMC: 9203415. DOI: 10.1007/s00417-021-05520-6.


An Automated CAD System for Accurate Grading of Uveitis Using Optical Coherence Tomography Images.

Haggag S, Khalifa F, Abdeltawab H, Elnakib A, Ghazal M, Mohamed M Sensors (Basel). 2021; 21(16).

PMID: 34450898 PMC: 8401645. DOI: 10.3390/s21165457.


Algorithm Variability in Quantification of Epithelial Defect Size in Microbial Keratitis Images.

Kriegel M, Huang J, Ashfaq H, Niziol L, Preethi M, Tan H Cornea. 2020; 39(5):628-633.

PMID: 31977729 PMC: 7732187. DOI: 10.1097/ICO.0000000000002258.


Automatic detection of the foveal center in optical coherence tomography.

Liefers B, Venhuizen F, Schreur V, van Ginneken B, Hoyng C, Fauser S Biomed Opt Express. 2017; 8(11):5160-5178.

PMID: 29188111 PMC: 5695961. DOI: 10.1364/BOE.8.005160.

References
1.
Kao E, Lin P, Chou M, Jaw T, Liu G . Automated detection of fovea in fundus images based on vessel-free zone and adaptive Gaussian template. Comput Methods Programs Biomed. 2014; 117(2):92-103. DOI: 10.1016/j.cmpb.2014.08.003. View

2.
Wang F, Gregori G, Rosenfeld P, Lujan B, Durbin M, Bagherinia H . Automated detection of the foveal center improves SD-OCT measurements of central retinal thickness. Ophthalmic Surg Lasers Imaging. 2013; 43(6 Suppl):S32-7. DOI: 10.3928/15428877-20121001-06. View

3.
Montuoro A, Wu J, Waldstein S, Gerendas B, Langs G, Simader C . Motion artefact correction in retinal optical coherence tomography using local symmetry. Med Image Comput Comput Assist Interv. 2014; 17(Pt 2):130-7. DOI: 10.1007/978-3-319-10470-6_17. View

4.
Sinthanayothin C, Boyce J, Cook H, Williamson T . Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images. Br J Ophthalmol. 1999; 83(8):902-10. PMC: 1723142. DOI: 10.1136/bjo.83.8.902. View

5.
Waldstein S, Gerendas B, Montuoro A, Simader C, Schmidt-Erfurth U . Quantitative comparison of macular segmentation performance using identical retinal regions across multiple spectral-domain optical coherence tomography instruments. Br J Ophthalmol. 2015; 99(6):794-800. DOI: 10.1136/bjophthalmol-2014-305573. View