» Articles » PMID: 27654913

The Architecture of Respiratory Supercomplexes

Overview
Journal Nature
Specialty Science
Date 2016 Sep 23
PMID 27654913
Citations 239
Authors
Affiliations
Soon will be listed here.
Abstract

Mitochondrial electron transport chain complexes are organized into supercomplexes responsible for carrying out cellular respiration. Here we present three architectures of mammalian (ovine) supercomplexes determined by cryo-electron microscopy. We identify two distinct arrangements of supercomplex CICIIICIV (the respirasome)-a major 'tight' form and a minor 'loose' form (resolved at the resolution of 5.8 Å and 6.7 Å, respectively), which may represent different stages in supercomplex assembly or disassembly. We have also determined an architecture of supercomplex CICIII at 7.8 Å resolution. All observed density can be attributed to the known 80 subunits of the individual complexes, including 132 transmembrane helices. The individual complexes form tight interactions that vary between the architectures, with complex IV subunit COX7a switching contact from complex III to complex I. The arrangement of active sites within the supercomplex may help control reactive oxygen species production. To our knowledge, these are the first complete architectures of the dominant, physiologically relevant state of the electron transport chain.

Citing Articles

Cadmium-cardiolipin disruption of respirasome assembly and redox balance through mitochondrial membrane rigidification.

Romanova N, Sule K, Issler T, Hebrok D, Persicke M, Thevenod F J Lipid Res. 2025; 66(3):100750.

PMID: 39880166 PMC: 11905837. DOI: 10.1016/j.jlr.2025.100750.


Mutations of the Electron Transport Chain Affect Lifespan and ROS Levels in .

osz F, Nazir A, Takacs-Vellai K, Farkas Z Antioxidants (Basel). 2025; 14(1).

PMID: 39857410 PMC: 11761250. DOI: 10.3390/antiox14010076.


Formation of I+III supercomplex rescues respiratory chain defects.

Liang C, Padavannil A, Zhang S, Beh S, Robinson D, Meisterknecht J Cell Metab. 2025; 37(2):441-459.e11.

PMID: 39788125 PMC: 11892702. DOI: 10.1016/j.cmet.2024.11.011.


Evaluation of Respiration with a Clark-Type Electrode in Isolated Mitochondria, Intact and Permeabilized Cells, and Explants from Animal Tissues.

Silva A, Oliveira P Methods Mol Biol. 2024; 2878():1-34.

PMID: 39546254 DOI: 10.1007/978-1-0716-4264-1_1.


Structural basis of respiratory complex adaptation to cold temperatures.

Shin Y, Latorre-Muro P, Djurabekova A, Zdorevskyi O, Bennett C, Burger N Cell. 2024; 187(23):6584-6598.e17.

PMID: 39395414 PMC: 11601890. DOI: 10.1016/j.cell.2024.09.029.


References
1.
Chazotte B, Hackenbrock C . The multicollisional, obstructed, long-range diffusional nature of mitochondrial electron transport. J Biol Chem. 1988; 263(28):14359-67. View

2.
Ogilvie I, Kennaway N, Shoubridge E . A molecular chaperone for mitochondrial complex I assembly is mutated in a progressive encephalopathy. J Clin Invest. 2005; 115(10):2784-92. PMC: 1236688. DOI: 10.1172/JCI26020. View

3.
Hackenbrock C, Chazotte B, Gupte S . The random collision model and a critical assessment of diffusion and collision in mitochondrial electron transport. J Bioenerg Biomembr. 1986; 18(5):331-68. DOI: 10.1007/BF00743010. View

4.
Xia D, Esser L, Tang W, Zhou F, Zhou Y, Yu L . Structural analysis of cytochrome bc1 complexes: implications to the mechanism of function. Biochim Biophys Acta. 2012; 1827(11-12):1278-94. PMC: 3593749. DOI: 10.1016/j.bbabio.2012.11.008. View

5.
Emsley P, Lohkamp B, Scott W, Cowtan K . Features and development of Coot. Acta Crystallogr D Biol Crystallogr. 2010; 66(Pt 4):486-501. PMC: 2852313. DOI: 10.1107/S0907444910007493. View