» Articles » PMID: 27643411

Atomic Layer Deposition for Coating of High Aspect Ratio TiO Nanotube Layers

Overview
Journal Langmuir
Specialty Chemistry
Date 2016 Sep 20
PMID 27643411
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

We present an optimized approach for the deposition of AlO (as a model secondary material) coating into high aspect ratio (≈180) anodic TiO nanotube layers using the atomic layer deposition (ALD) process. In order to study the influence of the diffusion of the AlO precursors on the resulting coating thickness, ALD processes with different exposure times (i.e., 0.5, 2, 5, and 10 s) of the trimethylaluminum (TMA) precursor were performed. Uniform coating of the nanotube interiors was achieved with longer exposure times (5 and 10 s), as verified by detailed scanning electron microscopy analysis. Quartz crystal microbalance measurements were used to monitor the deposition process and its particular features due to the tube diameter gradient. Finally, theoretical calculations were performed to calculate the minimum precursor exposure time to attain uniform coating. Theoretical values on the diffusion regime matched with the experimental results and helped to obtain valuable information for further optimization of ALD coating processes. The presented approach provides a straightforward solution toward the development of many novel devices, based on a high surface area interface between TiO nanotubes and a secondary material (such as AlO).

Citing Articles

Enhancement of biocompatibility of anodic nanotube structures on biomedical Ti-6Al-4V alloy via ultrathin TiO coatings.

Sepulveda M, Capek J, Baishya K, Rodriguez-Pereira J, Bacova J, Jelinkova S Front Bioeng Biotechnol. 2024; 12:1515810.

PMID: 39687268 PMC: 11646768. DOI: 10.3389/fbioe.2024.1515810.


Ultrathin TiO Coatings via Atomic Layer Deposition Strongly Improve Cellular Interactions on Planar and Nanotubular Biomedical Ti Substrates.

Capek J, Sepulveda M, Bacova J, Rodriguez-Pereira J, Zazpe R, Cicmancova V ACS Appl Mater Interfaces. 2024; 16(5):5627-5636.

PMID: 38275195 PMC: 10859894. DOI: 10.1021/acsami.3c17074.


Laser-induced crystallization of anodic TiO nanotube layers.

Sopha H, Mirza I, Turcicova H, Pavlinak D, Michalicka J, Krbal M RSC Adv. 2022; 10(37):22137-22145.

PMID: 35516600 PMC: 9054590. DOI: 10.1039/d0ra02929g.


Low temperature atomic layer deposition of zirconium oxide for inkjet printed transistor applications.

Jewel M, Mahmud M, Monne M, Zakhidov A, Chen M RSC Adv. 2022; 9(4):1841-1848.

PMID: 35516157 PMC: 9059772. DOI: 10.1039/c8ra08470j.


Kinetic Resolution of Racemic Mixtures via Enantioselective Photocatalysis.

Arbell N, Bauer K, Paz Y ACS Appl Mater Interfaces. 2021; 13(33):39781-39790.

PMID: 34378379 PMC: 8397234. DOI: 10.1021/acsami.1c12216.


References
1.
Macak J, Kohoutek T, Wang L, Beranek R . Fast and robust infiltration of functional material inside titania nanotube layers: case study of a chalcogenide glass sensitizer. Nanoscale. 2013; 5(20):9541-5. DOI: 10.1039/c3nr03014h. View

2.
Macak J, Tsuchiya H, Schmuki P . High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew Chem Int Ed Engl. 2005; 44(14):2100-2. DOI: 10.1002/anie.200462459. View

3.
Macak J, Tsuchiya H, Taveira L, Aldabergerova S, Schmuki P . Smooth anodic TiO2 nanotubes. Angew Chem Int Ed Engl. 2005; 44(45):7463-5. DOI: 10.1002/anie.200502781. View

4.
Masuda H, Fukuda K . Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science. 1995; 268(5216):1466-8. DOI: 10.1126/science.268.5216.1466. View

5.
Assaud L, Brazeau N, Barr M, Hanbucken M, Ntais S, Baranova E . Atomic Layer Deposition of Pd Nanoparticles on TiO₂ Nanotubes for Ethanol Electrooxidation: Synthesis and Electrochemical Properties. ACS Appl Mater Interfaces. 2015; 7(44):24533-42. DOI: 10.1021/acsami.5b06056. View