DyHAP: Dynamic Hybrid ANFIS-PSO Approach for Predicting Mobile Malware
Overview
Affiliations
To deal with the large number of malicious mobile applications (e.g. mobile malware), a number of malware detection systems have been proposed in the literature. In this paper, we propose a hybrid method to find the optimum parameters that can be used to facilitate mobile malware identification. We also present a multi agent system architecture comprising three system agents (i.e. sniffer, extraction and selection agent) to capture and manage the pcap file for data preparation phase. In our hybrid approach, we combine an adaptive neuro fuzzy inference system (ANFIS) and particle swarm optimization (PSO). Evaluations using data captured on a real-world Android device and the MalGenome dataset demonstrate the effectiveness of our approach, in comparison to two hybrid optimization methods which are differential evolution (ANFIS-DE) and ant colony optimization (ANFIS-ACO).
Atacak I, Kilic K, Dogru I PeerJ Comput Sci. 2022; 8:e1092.
PMID: 36262124 PMC: 9575934. DOI: 10.7717/peerj-cs.1092.
The rise of obfuscated Android malware and impacts on detection methods.
Elsersy W, Feizollah A, Anuar N PeerJ Comput Sci. 2022; 8:e907.
PMID: 35494876 PMC: 9044361. DOI: 10.7717/peerj-cs.907.
A static analysis approach for Android permission-based malware detection systems.
Mohamad Arif J, Ab Razak M, Awang S, Tuan Mat S, Ismail N, Firdaus A PLoS One. 2021; 16(9):e0257968.
PMID: 34591930 PMC: 8483345. DOI: 10.1371/journal.pone.0257968.
Taxonomy of Adaptive Neuro-Fuzzy Inference System in Modern Engineering Sciences.
Chopra S, Dhiman G, Sharma A, Shabaz M, Shukla P, Arora M Comput Intell Neurosci. 2021; 2021:6455592.
PMID: 34527042 PMC: 8437605. DOI: 10.1155/2021/6455592.
Fang Y, Zeng Y, Li B, Liu L, Zhang L PLoS One. 2020; 15(4):e0231626.
PMID: 32324836 PMC: 7179847. DOI: 10.1371/journal.pone.0231626.