» Articles » PMID: 27559757

Optimization of Protein Backbone Dihedral Angles by Means of Hamiltonian Reweighting

Overview
Date 2016 Aug 26
PMID 27559757
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

Molecular dynamics simulations depend critically on the accuracy of the underlying force fields in properly representing biomolecules. Hence, it is crucial to validate the force-field parameter sets in this respect. In the context of the GROMOS force field, this is usually achieved by comparing simulation data to experimental observables for small molecules. In this study, we develop new amino acid backbone dihedral angle potential energy parameters based on the widely used 54A7 parameter set by matching to experimental J values and secondary structure propensity scales. In order to find the most appropriate backbone parameters, close to 100 000 different combinations of parameters have been screened. However, since the sheer number of combinations considered prohibits actual molecular dynamics simulations for each of them, we instead predicted the values for every combination using Hamiltonian reweighting. While the original 54A7 parameter set fails to reproduce the experimental data, we are able to provide parameters that match significantly better. However, to ensure applicability in the context of larger peptides and full proteins, further studies have to be undertaken.

Citing Articles

On the Validation of Protein Force Fields Based on Structural Criteria.

Stroet M, Setz M, Lee T, Malde A, van den Bergen G, Sykacek P J Phys Chem B. 2024; 128(19):4602-4620.

PMID: 38711373 PMC: 11103706. DOI: 10.1021/acs.jpcb.3c08469.


Combining Force Fields and Neural Networks for an Accurate Representation of Bonded Interactions.

Kamath G, Illarionov A, Sakipov S, Pereyaslavets L, Kurnikov I, Butin O J Phys Chem A. 2024; 128(4):807-812.

PMID: 38232765 PMC: 11008955. DOI: 10.1021/acs.jpca.3c07598.


Structural Aspects of the O-glycosylation Linkage in Glycopeptides via MD Simulations and Comparison with NMR Experiments.

Turupcu A, Diem M, Smith L, Oostenbrink C Chemphyschem. 2019; 20(11):1527-1537.

PMID: 30920077 PMC: 6563056. DOI: 10.1002/cphc.201900079.


MDplot: Visualise Molecular Dynamics.

Margreitter C, Oostenbrink C R J. 2017; 9(1):164-186.

PMID: 28845302 PMC: 5570379.

References
1.
Christen M, Hunenberger P, Bakowies D, Baron R, Burgi R, Geerke D . The GROMOS software for biomolecular simulation: GROMOS05. J Comput Chem. 2005; 26(16):1719-51. DOI: 10.1002/jcc.20303. View

2.
Best R, Zhu X, Shim J, Lopes P, Mittal J, Feig M . Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. J Chem Theory Comput. 2013; 8(9):3257-3273. PMC: 3549273. DOI: 10.1021/ct300400x. View

3.
Avbelj F, Golic Grdadolnik S, Grdadolnik J, Baldwin R . Intrinsic backbone preferences are fully present in blocked amino acids. Proc Natl Acad Sci U S A. 2006; 103(5):1272-7. PMC: 1360578. DOI: 10.1073/pnas.0510420103. View

4.
Hagarman A, Measey T, Mathieu D, Schwalbe H, Schweitzer-Stenner R . Intrinsic propensities of amino acid residues in GxG peptides inferred from amide I' band profiles and NMR scalar coupling constants. J Am Chem Soc. 2009; 132(2):540-51. DOI: 10.1021/ja9058052. View

5.
Stocker U, van Gunsteren W . Molecular dynamics simulation of hen egg white lysozyme: a test of the GROMOS96 force field against nuclear magnetic resonance data. Proteins. 2000; 40(1):145-53. View