» Articles » PMID: 27558743

Small Secreted Proteins Enable Biofilm Development in the Cyanobacterium Synechococcus Elongatus

Overview
Journal Sci Rep
Specialty Science
Date 2016 Aug 26
PMID 27558743
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

Small proteins characterized by a double-glycine (GG) secretion motif, typical of secreted bacterial antibiotics, are encoded by the genomes of diverse cyanobacteria, but their functions have not been investigated to date. Using a biofilm-forming mutant of Synechococcus elongatus PCC 7942 and a mutational approach, we demonstrate the involvement of four small secreted proteins and their GG-secretion motifs in biofilm development. These proteins are denoted EbfG1-4 (enable biofilm formation with a GG-motif). Furthermore, the conserved cysteine of the peptidase domain of the Synpcc7942_1133 gene product (dubbed PteB for peptidase transporter essential for biofilm) is crucial for biofilm development and is required for efficient secretion of the GG-motif containing proteins. Transcriptional profiling of ebfG1-4 indicated elevated transcript levels in the biofilm-forming mutant compared to wild type (WT). However, these transcripts decreased, acutely but transiently, when the mutant was cultured in extracellular fluids from a WT culture, and biofilm formation was inhibited. We propose that WT cells secrete inhibitor(s) that suppress transcription of ebfG1-4, whereas secretion of the inhibitor(s) is impaired in the biofilm-forming mutant, leading to synthesis and secretion of EbfG1-4 and supporting the formation of biofilms.

Citing Articles

EXCRETE workflow enables deep proteomics of the microbial extracellular environment.

Russo D, Oliinyk D, Pohnert G, Meier F, Zedler J Commun Biol. 2024; 7(1):1189.

PMID: 39322645 PMC: 11424642. DOI: 10.1038/s42003-024-06910-2.


Machine learning reveals the transcriptional regulatory network and circadian dynamics of PCC 7942.

Yuan Y, Al Bulushi T, Sastry A, Sancar C, Szubin R, Golden S Proc Natl Acad Sci U S A. 2024; 121(38):e2410492121.

PMID: 39269777 PMC: 11420160. DOI: 10.1073/pnas.2410492121.


A cyanobacterial sigma factor F controls biofilm-promoting genes through intra- and intercellular pathways.

Suban S, Yemini S, Shor A, Waldman Ben-Asher H, Yaron O, Karako-Lampert S Biofilm. 2024; 8:100217.

PMID: 39188729 PMC: 11345509. DOI: 10.1016/j.bioflm.2024.100217.


Protist impacts on marine cyanovirocell metabolism.

Howard-Varona C, Roux S, Bowen B, Silva L, Lau R, Schwenck S ISME Commun. 2023; 2(1):94.

PMID: 37938263 PMC: 9723779. DOI: 10.1038/s43705-022-00169-6.


Linking microbial slime community structure with abiotic factors and antifouling strategy in hydroelectric cooling systems.

de Paula Reis M, de Paula R, E Souza C, de Oliveira Junior R, Cardoso A Braz J Microbiol. 2023; 54(3):1547-1557.

PMID: 37301793 PMC: 10484857. DOI: 10.1007/s42770-023-01020-3.


References
1.
Schatz D, Nagar E, Sendersky E, Parnasa R, Zilberman S, Carmeli S . Self-suppression of biofilm formation in the cyanobacterium Synechococcus elongatus. Environ Microbiol. 2013; 15(6):1786-94. DOI: 10.1111/1462-2920.12070. View

2.
Parsek M, Greenberg E . Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol. 2005; 13(1):27-33. DOI: 10.1016/j.tim.2004.11.007. View

3.
Lin D, Huang S, Chen J . Crystal structures of a polypeptide processing and secretion transporter. Nature. 2015; 523(7561):425-30. DOI: 10.1038/nature14623. View

4.
Taton A, Unglaub F, Wright N, Zeng W, Paz-Yepes J, Brahamsha B . Broad-host-range vector system for synthetic biology and biotechnology in cyanobacteria. Nucleic Acids Res. 2014; 42(17):e136. PMC: 4176158. DOI: 10.1093/nar/gku673. View

5.
Fisher M, Allen R, Luo Y, Curtiss 3rd R . Export of extracellular polysaccharides modulates adherence of the Cyanobacterium synechocystis. PLoS One. 2013; 8(9):e74514. PMC: 3769361. DOI: 10.1371/journal.pone.0074514. View