» Articles » PMID: 27558520

Shaping Polymersomes into Predictable Morphologies Via Out-of-equilibrium Self-assembly

Overview
Journal Nat Commun
Specialty Biology
Date 2016 Aug 26
PMID 27558520
Citations 50
Authors
Affiliations
Soon will be listed here.
Abstract

Polymersomes are bilayer vesicles, self-assembled from amphiphilic block copolymers. They are versatile nanocapsules with adjustable properties, such as flexibility, permeability, size and functionality. However, so far no methodological approach to control their shape exists. Here we demonstrate a mechanistically fully understood procedure to precisely control polymersome shape via an out-of-equilibrium process. Carefully selecting osmotic pressure and permeability initiates controlled deflation, resulting in transient capsule shapes, followed by reinflation of the polymersomes. The shape transformation towards stomatocytes, bowl-shaped vesicles, was probed with magnetic birefringence, permitting us to stop the process at any intermediate shape in the phase diagram. Quantitative electron microscopy analysis of the different morphologies reveals that this shape transformation proceeds via a long-predicted hysteretic deflation-inflation trajectory, which can be understood in terms of bending energy. Because of the high degree of controllability and predictability, this study provides the design rules for accessing polymersomes with all possible different shapes.

Citing Articles

Designing polymersomes with surface-integrated nanoparticles through hierarchical phase separation.

Shao J, Luo Y, Wu H, Wang J, Zhou X, Er S Nat Commun. 2025; 16(1):2445.

PMID: 40069209 PMC: 11897236. DOI: 10.1038/s41467-025-57711-y.


Hot shape transformation: the role of PSar dehydration in stomatocyte morphogenesis.

Peters R, Charleston L, van Eck K, van Berlo T, Wilson D Beilstein J Org Chem. 2025; 21():47-54.

PMID: 39811685 PMC: 11729680. DOI: 10.3762/bjoc.21.5.


Nonlinear amplification of nano bowl surface concavity on the critical response threshold to biosignals.

Li X, Liang X, Yang C, Yan Q Nat Commun. 2024; 15(1):8699.

PMID: 39379367 PMC: 11461742. DOI: 10.1038/s41467-024-53053-3.


Poly(2-oxazoline)-Based Thermoresponsive Stomatocytes.

Terracciano R, Liu Y, Varanaraja Z, Godzina M, Yilmaz G, van Hest J Biomacromolecules. 2024; 25(9):6050-6059.

PMID: 39146037 PMC: 11388456. DOI: 10.1021/acs.biomac.4c00726.


Kinetically Controlled and Nonequilibrium Assembly of Block Copolymers in Solution.

Fielden S J Am Chem Soc. 2024; 146(28):18781-18796.

PMID: 38967256 PMC: 11258791. DOI: 10.1021/jacs.4c03314.


References
1.
Discher D, Bhasin N, Johnson C . Covalent chemistry on distended proteins. Proc Natl Acad Sci U S A. 2006; 103(20):7533-4. PMC: 1472479. DOI: 10.1073/pnas.0602388103. View

2.
Robertson J, Yealland G, Avila-Olias M, Chierico L, Bandmann O, Renshaw S . pH-sensitive tubular polymersomes: formation and applications in cellular delivery. ACS Nano. 2014; 8(5):4650-61. DOI: 10.1021/nn5004088. View

3.
Chang H, Sheng Y, Tsao H . Structural and mechanical characteristics of polymersomes. Soft Matter. 2014; 10(34):6373-81. DOI: 10.1039/c4sm01092b. View

4.
Mai Y, Eisenberg A . Self-assembly of block copolymers. Chem Soc Rev. 2012; 41(18):5969-85. DOI: 10.1039/c2cs35115c. View

5.
van Rhee P, Rikken R, Abdelmohsen L, Maan J, Nolte R, van Hest J . Polymersome magneto-valves for reversible capture and release of nanoparticles. Nat Commun. 2014; 5:5010. PMC: 4176683. DOI: 10.1038/ncomms6010. View