Kulyabin M, Zhdanov A, Pershin A, Sokolov G, Nikiforova A, Ronkin M
Bioengineering (Basel). 2024; 11(9).
PMID: 39329682
PMC: 11428920.
DOI: 10.3390/bioengineering11090940.
Liu X, Zhu H, Zhang H, Xia S
Sensors (Basel). 2024; 24(16).
PMID: 39204923
PMC: 11359948.
DOI: 10.3390/s24165227.
Opoku M, Weyori B, Adekoya A, Adu K
PLoS One. 2023; 18(11):e0288663.
PMID: 38032915
PMC: 10688733.
DOI: 10.1371/journal.pone.0288663.
Bui P, Le D, Bum J, Kim S, Song S, Choo H
Bioengineering (Basel). 2023; 10(11).
PMID: 38002373
PMC: 10669434.
DOI: 10.3390/bioengineering10111249.
Leingang O, Riedl S, Mai J, Reiter G, Faustmann G, Fuchs P
Sci Rep. 2023; 13(1):19545.
PMID: 37945665
PMC: 10636170.
DOI: 10.1038/s41598-023-46626-7.
A Deep Learning-Based Framework for Retinal Disease Classification.
Choudhary A, Ahlawat S, Urooj S, Pathak N, Lay-Ekuakille A, Sharma N
Healthcare (Basel). 2023; 11(2).
PMID: 36673578
PMC: 9859538.
DOI: 10.3390/healthcare11020212.
Automatic detection of microaneurysms in optical coherence tomography images of retina using convolutional neural networks and transfer learning.
Almasi R, Vafaei A, Kazeminasab E, Rabbani H
Sci Rep. 2022; 12(1):13975.
PMID: 35978087
PMC: 9385621.
DOI: 10.1038/s41598-022-18206-8.
Self-supervised patient-specific features learning for OCT image classification.
Fang L, Guo J, He X, Li M
Med Biol Eng Comput. 2022; 60(10):2851-2863.
PMID: 35931872
DOI: 10.1007/s11517-022-02627-8.
HCTNet: A Hybrid ConvNet-Transformer Network for Retinal Optical Coherence Tomography Image Classification.
Ma Z, Xie Q, Xie P, Fan F, Gao X, Zhu J
Biosensors (Basel). 2022; 12(7).
PMID: 35884345
PMC: 9313149.
DOI: 10.3390/bios12070542.
A Novel Computer-Aided Diagnostic System for Early Detection of Diabetic Retinopathy Using 3D-OCT Higher-Order Spatial Appearance Model.
Elsharkawy M, Sharafeldeen A, Soliman A, Khalifa F, Ghazal M, El-Daydamony E
Diagnostics (Basel). 2022; 12(2).
PMID: 35204552
PMC: 8871295.
DOI: 10.3390/diagnostics12020461.
Narrative review of artificial intelligence in diabetic macular edema: Diagnosis and predicting treatment response using optical coherence tomography.
Chakroborty S, Gupta M, Devishamani C, Patel K, Ankit C, Ganesh Babu T
Indian J Ophthalmol. 2021; 69(11):2999-3008.
PMID: 34708735
PMC: 8725112.
DOI: 10.4103/ijo.IJO_1482_21.
A Multitask Deep-Learning System to Classify Diabetic Macular Edema for Different Optical Coherence Tomography Devices: A Multicenter Analysis.
Tang F, Wang X, Ran A, Chan C, Ho M, Yip W
Diabetes Care. 2021; 44(9):2078-2088.
PMID: 34315698
PMC: 8740924.
DOI: 10.2337/dc20-3064.
Precise higher-order reflectivity and morphology models for early diagnosis of diabetic retinopathy using OCT images.
Sharafeldeen A, Elsharkawy M, Khalifa F, Soliman A, Ghazal M, Alhalabi M
Sci Rep. 2021; 11(1):4730.
PMID: 33633139
PMC: 7907116.
DOI: 10.1038/s41598-021-83735-7.
Automatic diagnosis of macular diseases from OCT volume based on its two-dimensional feature map and convolutional neural network with attention mechanism.
Sun Y, Zhang H, Yao X
J Biomed Opt. 2020; 25(9).
PMID: 32940026
PMC: 7493033.
DOI: 10.1117/1.JBO.25.9.096004.
Deep learning-based single-shot prediction of differential effects of anti-VEGF treatment in patients with diabetic macular edema.
Rasti R, Allingham M, Mettu P, Kavusi S, Govind K, Cousins S
Biomed Opt Express. 2020; 11(2):1139-1152.
PMID: 32133239
PMC: 7041458.
DOI: 10.1364/BOE.379150.
Deep learning-based automated detection of retinal diseases using optical coherence tomography images.
Li F, Chen H, Liu Z, Zhang X, Jiang M, Wu Z
Biomed Opt Express. 2019; 10(12):6204-6226.
PMID: 31853395
PMC: 6913386.
DOI: 10.1364/BOE.10.006204.
AOCT-NET: a convolutional network automated classification of multiclass retinal diseases using spectral-domain optical coherence tomography images.
Alqudah A
Med Biol Eng Comput. 2019; 58(1):41-53.
PMID: 31728935
DOI: 10.1007/s11517-019-02066-y.
Deep learning is effective for the classification of OCT images of normal versus Age-related Macular Degeneration.
Lee C, Baughman D, Lee A
Ophthalmol Retina. 2019; 1(4):322-327.
PMID: 30693348
PMC: 6347658.
DOI: 10.1016/j.oret.2016.12.009.
Classification of healthy and diseased retina using SD-OCT imaging and Random Forest algorithm.
Hussain M, Bhuiyan A, Luu C, Smith R, Guymer R, Ishikawa H
PLoS One. 2018; 13(6):e0198281.
PMID: 29864167
PMC: 5986153.
DOI: 10.1371/journal.pone.0198281.
Machine learning techniques for diabetic macular edema (DME) classification on SD-OCT images.
Alsaih K, Lemaitre G, Rastgoo M, Massich J, Sidibe D, Meriaudeau F
Biomed Eng Online. 2017; 16(1):68.
PMID: 28592309
PMC: 5463338.
DOI: 10.1186/s12938-017-0352-9.