Katayama K, Nonaka Y, Tsutsui K, Imai H, Kandori H
Sci Rep. 2017; 7(1):4904.
PMID: 28687791
PMC: 5501831.
DOI: 10.1038/s41598-017-05177-4.
Foster K, Saranak J, Krane S, Johnson R, Nakanishi K
Chem Biol. 2011; 18(6):733-42.
PMID: 21700209
PMC: 3400536.
DOI: 10.1016/j.chembiol.2011.04.009.
Balashov S, Govindjee R, Ebrey T
Biophys J. 2009; 60(2):475-90.
PMID: 19431801
PMC: 1260085.
DOI: 10.1016/S0006-3495(91)82074-4.
Govindjee R, Balashov S, Ebrey T
Biophys J. 2009; 58(3):597-608.
PMID: 19431766
PMC: 1281001.
DOI: 10.1016/S0006-3495(90)82403-6.
Wood K, Lehnert U, Kessler B, Zaccai G, Oesterhelt D
Biophys J. 2008; 95(1):194-202.
PMID: 18339747
PMC: 2426655.
DOI: 10.1529/biophysj.107.120386.
Dynamics of different functional parts of bacteriorhodopsin: H-2H labeling and neutron scattering.
Reat V, Patzelt H, Ferrand M, Pfister C, Oesterhelt D, Zaccai G
Proc Natl Acad Sci U S A. 1998; 95(9):4970-5.
PMID: 9560212
PMC: 20197.
DOI: 10.1073/pnas.95.9.4970.
Photoactivation of rhodopsin involves alterations in cysteine side chains: detection of an S-H band in the Meta I-->Meta II FTIR difference spectrum.
Rath P, Degrip W, Rothschild K
Biophys J. 1994; 66(6):2085-91.
PMID: 8075342
PMC: 1275934.
DOI: 10.1016/S0006-3495(94)81003-3.
The pH dependence of the subpicosecond retinal photoisomerization process in bacteriorhodopsin: evidence for parallel photocycles.
Song L, Logunov S, Yang D, El-Sayed M
Biophys J. 1994; 67(5):2008-12.
PMID: 7858138
PMC: 1225576.
DOI: 10.1016/S0006-3495(94)80684-8.
Fourier transform infrared evidence for proline structural changes during the bacteriorhodopsin photocycle.
Rothschild K, He Y, Gray D, Roepe P, Pelletier S, Brown R
Proc Natl Acad Sci U S A. 1989; 86(24):9832-5.
PMID: 2602377
PMC: 298596.
DOI: 10.1073/pnas.86.24.9832.
Peptide building blocks from bacteriorhodopsin: isolation and physicochemical characterization of two individual transmembrane segments.
WUETHRICH M, Sigrist H
J Protein Chem. 1990; 9(2):201-7.
PMID: 2386614
DOI: 10.1007/BF01025310.
Uv-visible spectroscopy of bacteriorhodopsin mutants: substitution of Arg-82, Asp-85, Tyr-185, and Asp-212 results in abnormal light-dark adaptation.
Dunach M, Marti T, Khorana H, Rothschild K
Proc Natl Acad Sci U S A. 1990; 87(24):9873-7.
PMID: 2263638
PMC: 55276.
DOI: 10.1073/pnas.87.24.9873.
The reaction of hydroxylamine with bacteriorhodopsin studied with mutants that have altered photocycles: selective reactivity of different photointermediates.
Subramaniam S, Marti T, Rosselet S, Rothschild K, Khorana H
Proc Natl Acad Sci U S A. 1991; 88(6):2583-7.
PMID: 2006195
PMC: 51277.
DOI: 10.1073/pnas.88.6.2583.
Protein dynamics in the bacteriorhodopsin photocycle: submillisecond Fourier transform infrared spectra of the L, M, and N photointermediates.
Braiman M, Bousche O, Rothschild K
Proc Natl Acad Sci U S A. 1991; 88(6):2388-92.
PMID: 2006176
PMC: 51237.
DOI: 10.1073/pnas.88.6.2388.
Protonation state of Asp (Glu)-85 regulates the purple-to-blue transition in bacteriorhodopsin mutants Arg-82----Ala and Asp-85----Glu: the blue form is inactive in proton translocation.
Subramaniam S, Marti T, Khorana H
Proc Natl Acad Sci U S A. 1990; 87(3):1013-7.
PMID: 1967832
PMC: 53400.
DOI: 10.1073/pnas.87.3.1013.
Chromophore motion during the bacteriorhodopsin photocycle: polarized absorption spectroscopy of bacteriorhodopsin and its M-state in bacteriorhodopsin crystals.
Schertler G, LOZIER R, Michel H, Oesterhelt D
EMBO J. 1991; 10(9):2353-61.
PMID: 1868827
PMC: 452930.
DOI: 10.1002/j.1460-2075.1991.tb07774.x.
FTIR difference spectroscopy of bacteriorhodopsin: toward a molecular model.
Rothschild K
J Bioenerg Biomembr. 1992; 24(2):147-67.
PMID: 1526959
DOI: 10.1007/BF00762674.
Effects of tryptophan mutation on the deprotonation and reprotonation kinetics of the Schiff base during the photocycle of bacteriorhodopsin.
Wu S, Chang Y, El-Sayed M, Marti T, Mogi T, Khorana H
Biophys J. 1992; 61(5):1281-8.
PMID: 1318094
PMC: 1260391.
DOI: 10.1016/S0006-3495(92)81936-7.