» Articles » PMID: 27528027

Stromal Remodeling by the BET Bromodomain Inhibitor JQ1 Suppresses the Progression of Human Pancreatic Cancer

Abstract

Inhibitors of bromodomain and extraterminal domain (BET) proteins, a family of chromatin reader proteins, have therapeutic efficacy against various malignancies. However, the detailed mechanisms underlying the anti-tumor effects in distinct tumor types remain elusive. Here, we show a novel antitumor mechanism of BET inhibition in pancreatic ductal adenocarcinoma (PDAC). We found that JQ1, a BET inhibitor, decreased desmoplastic stroma, a hallmark of PDAC, and suppressed the growth of patient-derived tumor xenografts (PDX) of PDACs. In vivo antitumor effects of JQ1 were not always associated with the JQ1 sensitivity of respective PDAC cells, and were rather dependent on the suppression of tumor-promoting activity in cancer-associated fibroblasts (CAFs). JQ1 inhibited Hedgehog and TGF-β pathways as potent regulators of CAF activation and suppressed the expression of α-SMA, extracellular matrix, cytokines, and growth factors in human primary CAFs. Consistently, conditioned media (CM) from CAFs promoted the proliferation of PDAC cells along with the activation of ERK, AKT, and STAT3 pathways, though these effects were suppressed when CM from JQ1-treated CAFs was used. Mechanistically, chromatin immunoprecipitation experiments revealed that JQ1 reduced TGF-β-dependent gene expression by disrupting the recruitment of the transcriptional machinery containing BET proteins. Finally, combination therapy with gemcitabine plus JQ1 showed greater efficacy than gemcitabine monotherapy against PDAC in vivo. Thus, our results reveal BET proteins as the critical regulators of CAF-activation and also provide evidence that stromal remodeling by epigenetic modulators can be a novel therapeutic option for PDAC.

Citing Articles

Epigenetic Regulation of Stromal and Immune Cells and Therapeutic Targets in the Tumor Microenvironment.

Liu K, Li Y, Shen M, Xu W, Wu S, Yang X Biomolecules. 2025; 15(1).

PMID: 39858465 PMC: 11764280. DOI: 10.3390/biom15010071.


Cancer-associated fibroblasts, tumor and radiotherapy: interactions in the tumor micro-environment.

Raaijmakers K, Adema G, Bussink J, Ansems M J Exp Clin Cancer Res. 2024; 43(1):323.

PMID: 39696386 PMC: 11658324. DOI: 10.1186/s13046-024-03251-0.


BRD4: an effective target for organ fibrosis.

Wei Q, Gan C, Sun M, Xie Y, Liu H, Xue T Biomark Res. 2024; 12(1):92.

PMID: 39215370 PMC: 11365212. DOI: 10.1186/s40364-024-00641-6.


Glutamine deficiency drives transforming growth factor-β signaling activation that gives rise to myofibroblastic carcinoma-associated fibroblasts.

Mezawa Y, Wang T, Daigo Y, Takano A, Miyagi Y, Yokose T Cancer Sci. 2023; 114(11):4376-4387.

PMID: 37706357 PMC: 10637058. DOI: 10.1111/cas.15955.


Targeting BET Proteins Decreases Hyaluronidase-1 in Pancreatic Cancer.

Kumar K, Kanojia D, Bentrem D, Hwang R, Butchar J, Tridandapani S Cells. 2023; 12(11).

PMID: 37296612 PMC: 10253193. DOI: 10.3390/cells12111490.


References
1.
Yauch R, Gould S, Scales S, Tang T, Tian H, Ahn C . A paracrine requirement for hedgehog signalling in cancer. Nature. 2008; 455(7211):406-10. DOI: 10.1038/nature07275. View

2.
Dawson M, Prinjha R, Dittmann A, Giotopoulos G, Bantscheff M, Chan W . Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature. 2011; 478(7370):529-33. PMC: 3679520. DOI: 10.1038/nature10509. View

3.
Kang N, Shah V, Urrutia R . Membrane-to-Nucleus Signals and Epigenetic Mechanisms for Myofibroblastic Activation and Desmoplastic Stroma: Potential Therapeutic Targets for Liver Metastasis?. Mol Cancer Res. 2014; 13(4):604-12. PMC: 4398610. DOI: 10.1158/1541-7786.MCR-14-0542. View

4.
Bailey J, Swanson B, Hamada T, Eggers J, Singh P, Caffery T . Sonic hedgehog promotes desmoplasia in pancreatic cancer. Clin Cancer Res. 2008; 14(19):5995-6004. PMC: 2782957. DOI: 10.1158/1078-0432.CCR-08-0291. View

5.
Loven J, Hoke H, Lin C, Lau A, Orlando D, Vakoc C . Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell. 2013; 153(2):320-34. PMC: 3760967. DOI: 10.1016/j.cell.2013.03.036. View