» Articles » PMID: 27520770

Quantification of Corrinoids in Methanogenic Bacteria

Overview
Journal Curr Microbiol
Specialty Microbiology
Date 2016 Aug 14
PMID 27520770
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Corrinoids in several diverse species of methanogens were quantified by a bioassay utilizingEscherichia coli 113-3, a corrinoid auxotroph. All five species examined contained >0.65 nmol corrinoid/mg dry cells when grown on H2/CO2 as carbon and energy source. The highest corrinoid levels (4.1 nmol/mg cells) were found inMethanosarcina barkeri grown on methanol. The amount of corrinoids found in this species was dependent on growth conditions, but, regardless of energy source, metabolized levels inMethanosarcina barkeri were higher than those found in theMethanobacterium species examined (M. arbophilicum, M. formicium, M. ruminantium, andM. thermoautotrophicum).

Citing Articles

Effect of nickel, cobalt, and iron on methanogenesis from methanol and cometabolic conversion of 1,2-dichloroethene by Methanosarcina barkeri.

Paulo L, Hidayat M, Moretti G, Stams A, Sousa D Biotechnol Appl Biochem. 2020; 67(5):744-750.

PMID: 32282086 PMC: 7687089. DOI: 10.1002/bab.1925.


Effect of Nickel Levels on Hydrogen Partial Pressure and Methane Production in Methanogens.

Neubeck A, Sjoberg S, Price A, Callac N, Schnurer A PLoS One. 2016; 11(12):e0168357.

PMID: 27992585 PMC: 5161503. DOI: 10.1371/journal.pone.0168357.


Trace metal requirements for microbial enzymes involved in the production and consumption of methane and nitrous oxide.

Glass J, Orphan V Front Microbiol. 2012; 3:61.

PMID: 22363333 PMC: 3282944. DOI: 10.3389/fmicb.2012.00061.


Connection between multimetal(loid) methylation in methanoarchaea and central intermediates of methanogenesis.

Thomas F, Diaz-Bone R, Wuerfel O, Huber B, Weidenbach K, Schmitz R Appl Environ Microbiol. 2011; 77(24):8669-75.

PMID: 22003009 PMC: 3233109. DOI: 10.1128/AEM.06406-11.


Production of volatile derivatives of metal(loid)s by microflora involved in anaerobic digestion of sewage sludge.

Michalke K, Wickenheiser E, Mehring M, Hirner A, Hensel R Appl Environ Microbiol. 2000; 66(7):2791-6.

PMID: 10877769 PMC: 92074. DOI: 10.1128/AEM.66.7.2791-2796.2000.


References
1.
STADTMAN T . Methane fermentation. Annu Rev Microbiol. 1967; 21:121-42. DOI: 10.1146/annurev.mi.21.100167.001005. View

2.
McBride B, WOLFE R . A new coenzyme of methyl transfer, coenzyme M. Biochemistry. 1971; 10(12):2317-24. DOI: 10.1021/bi00788a022. View

3.
Weimer P, Zeikus J . One carbon metabolism in methanogenic bacteria. Cellular characterization and growth of Methanosarcina barkeri. Arch Microbiol. 1978; 119(1):49-57. DOI: 10.1007/BF00407927. View

4.
Zeikus J . The biology of methanogenic bacteria. Bacteriol Rev. 1977; 41(2):514-41. PMC: 414011. DOI: 10.1128/br.41.2.514-541.1977. View

5.
Gunsalus R, Romesser J, WOLFE R . Preparation of coenzyme M analogues and their activity in the methyl coenzyme M reductase system of Methanobacterium thermoautotrophicum. Biochemistry. 1978; 17(12):2374-7. DOI: 10.1021/bi00605a019. View