» Articles » PMID: 27519775

Exploratory Bi-factor Analysis: The Oblique Case

Overview
Journal Psychometrika
Specialty Social Sciences
Date 2016 Aug 14
PMID 27519775
Citations 36
Authors
Affiliations
Soon will be listed here.
Abstract

Bi-factor analysis is a form of confirmatory factor analysis originally introduced by Holzinger and Swineford (Psychometrika 47:41-54, 1937). The bi-factor model has a general factor, a number of group factors, and an explicit bi-factor structure. Jennrich and Bentler (Psychometrika 76:537-549, 2011) introduced an exploratory form of bi-factor analysis that does not require one to provide an explicit bi-factor structure a priori. They use exploratory factor analysis and a bifactor rotation criterion designed to produce a rotated loading matrix that has an approximate bi-factor structure. Among other things this can be used as an aid in finding an explicit bi-factor structure for use in a confirmatory bi-factor analysis. They considered only orthogonal rotation. The purpose of this paper is to consider oblique rotation and to compare it to orthogonal rotation. Because there are many more oblique rotations of an initial loading matrix than orthogonal rotations, one expects the oblique results to approximate a bi-factor structure better than orthogonal rotations and this is indeed the case. A surprising result arises when oblique bi-factor rotation methods are applied to ideal data.

Citing Articles

Inference of Correlations Among Testlet Effects: A Latent Variable Selection Method.

Xu X, Guo J, Xin T Appl Psychol Meas. 2024; :01466216241310598.

PMID: 39735820 PMC: 11670239. DOI: 10.1177/01466216241310598.


Improved Scoring of the Center for Epidemiologic Studies Depression Scale - Revised: An Item Response Theory Analysis.

Bean C, Mueller S, Abitante G, Ciesla J, Cho S, Cole D J Psychopathol Behav Assess. 2024; 46(3):783-792.

PMID: 39372194 PMC: 11447136. DOI: 10.1007/s10862-024-10155-y.


Testing the convergent validity, domain generality, and temporal stability of selected measures of people's tendency to explore.

Anvari F, Billinger S, Analytis P, Franco V, Marchiori D Nat Commun. 2024; 15(1):7721.

PMID: 39231941 PMC: 11375013. DOI: 10.1038/s41467-024-51685-z.


A Note on Comparing the Bifactor and Second-Order Factor Models: Is the Bayesian Information Criterion a Routinely Dependable Index for Model Selection?.

Raykov T, DiStefano C, Calvocoressi L Educ Psychol Meas. 2024; 84(2):271-288.

PMID: 38898876 PMC: 11185100. DOI: 10.1177/00131644231166348.


Patterns of item nonresponse behaviour to survey questionnaires are systematic and associated with genetic loci.

Mignogna G, Carey C, Wedow R, Baya N, Cordioli M, Pirastu N Nat Hum Behav. 2023; 7(8):1371-1387.

PMID: 37386106 PMC: 10444625. DOI: 10.1038/s41562-023-01632-7.


References
1.
Golay P, Lecerf T . Orthogonal higher order structure and confirmatory factor analysis of the French Wechsler Adult Intelligence Scale (WAIS-III). Psychol Assess. 2010; 23(1):143-52. DOI: 10.1037/a0021230. View

2.
Cai L, Yang J, Hansen M . Generalized full-information item bifactor analysis. Psychol Methods. 2011; 16(3):221-48. PMC: 3150629. DOI: 10.1037/a0023350. View

3.
Haviland M, Warren W, Riggs M . An observer scale to measure alexithymia. Psychosomatics. 2000; 41(5):385-92. DOI: 10.1176/appi.psy.41.5.385. View

4.
Chen F, West S, Sousa K . A Comparison of Bifactor and Second-Order Models of Quality of Life. Multivariate Behav Res. 2016; 41(2):189-225. DOI: 10.1207/s15327906mbr4102_5. View

5.
Reise S, Moore T, Haviland M . Bifactor models and rotations: exploring the extent to which multidimensional data yield univocal scale scores. J Pers Assess. 2010; 92(6):544-59. PMC: 2981404. DOI: 10.1080/00223891.2010.496477. View