» Articles » PMID: 27479906

Genetic Variation in MHC Proteins is Associated with T Cell Receptor Expression Biases

Overview
Journal Nat Genet
Specialty Genetics
Date 2016 Aug 2
PMID 27479906
Citations 79
Authors
Affiliations
Soon will be listed here.
Abstract

In each individual, a highly diverse T cell receptor (TCR) repertoire interacts with peptides presented by major histocompatibility complex (MHC) molecules. Despite extensive research, it remains controversial whether germline-encoded TCR-MHC contacts promote TCR-MHC specificity and, if so, whether differences exist in TCR V gene compatibilities with different MHC alleles. We applied expression quantitative trait locus (eQTL) mapping to test for associations between genetic variation and TCR V gene usage in a large human cohort. We report strong trans associations between variation in the MHC locus and TCR V gene usage. Fine-mapping of the association signals identifies specific amino acids from MHC genes that bias V gene usage, many of which contact or are spatially proximal to the TCR or peptide in the TCR-peptide-MHC complex. Hence, these MHC variants, several of which are linked to autoimmune diseases, can directly affect TCR-MHC interaction. These results provide the first examples of trans-QTL effects mediated by protein-protein interactions and are consistent with intrinsic TCR-MHC specificity.

Citing Articles

The molecular mechanisms of CD8 T cell responses to SARS-CoV-2 infection mediated by TCR-pMHC interactions.

Deng S, Xu Z, Hu J, Yang Y, Zhu F, Liu Z Front Immunol. 2024; 15:1468456.

PMID: 39450171 PMC: 11499136. DOI: 10.3389/fimmu.2024.1468456.


Interpretable GWAS by linking clinical phenotypes to quantifiable immune repertoire components.

Tan Y, Wang L, Zhang H, Pan M, Liu D, Zhan X Commun Biol. 2024; 7(1):1357.

PMID: 39428403 PMC: 11491462. DOI: 10.1038/s42003-024-07010-x.


Statistically and functionally fine-mapped blood eQTLs and pQTLs from 1,405 humans reveal distinct regulation patterns and disease relevance.

Wang Q, Hasegawa T, Namkoong H, Saiki R, Edahiro R, Sonehara K Nat Genet. 2024; 56(10):2054-2067.

PMID: 39317738 PMC: 11525184. DOI: 10.1038/s41588-024-01896-3.


Quantifiable blood TCR repertoire components associate with immune aging.

Hu J, Pan M, Reid B, Tworoger S, Li B Nat Commun. 2024; 15(1):8171.

PMID: 39289351 PMC: 11408526. DOI: 10.1038/s41467-024-52522-z.


Immune isolation-enabled nanoencapsulation of donor T cells: a promising strategy for mitigating GVHD and treating AML in preclinical models.

Mei D, Xue Z, Zhang T, Yang Y, Jin L, Yu Q J Immunother Cancer. 2024; 12(9).

PMID: 39242117 PMC: 11381671. DOI: 10.1136/jitc-2023-008663.


References
1.
Anders S, Pyl P, Huber W . HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2014; 31(2):166-9. PMC: 4287950. DOI: 10.1093/bioinformatics/btu638. View

2.
Blevins S, Pierce B, Singh N, Riley T, Wang Y, Spear T . How structural adaptability exists alongside HLA-A2 bias in the human αβ TCR repertoire. Proc Natl Acad Sci U S A. 2016; 113(9):E1276-85. PMC: 4780628. DOI: 10.1073/pnas.1522069113. View

3.
Patsopoulos N, Barcellos L, Hintzen R, Schaefer C, Van Duijn C, Noble J . Fine-mapping the genetic association of the major histocompatibility complex in multiple sclerosis: HLA and non-HLA effects. PLoS Genet. 2013; 9(11):e1003926. PMC: 3836799. DOI: 10.1371/journal.pgen.1003926. View

4.
Battle A, Mostafavi S, Zhu X, Potash J, Weissman M, McCormick C . Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 922 individuals. Genome Res. 2013; 24(1):14-24. PMC: 3875855. DOI: 10.1101/gr.155192.113. View

5.
Robins H, Srivastava S, Campregher P, Turtle C, Andriesen J, Riddell S . Overlap and effective size of the human CD8+ T cell receptor repertoire. Sci Transl Med. 2010; 2(47):47ra64. PMC: 3212437. DOI: 10.1126/scitranslmed.3001442. View