» Articles » PMID: 27467726

A Practical Guide to Photoacoustic Tomography in the Life Sciences

Overview
Journal Nat Methods
Date 2016 Jul 29
PMID 27467726
Citations 418
Authors
Affiliations
Soon will be listed here.
Abstract

The life sciences can benefit greatly from imaging technologies that connect microscopic discoveries with macroscopic observations. One technology uniquely positioned to provide such benefits is photoacoustic tomography (PAT), a sensitive modality for imaging optical absorption contrast over a range of spatial scales at high speed. In PAT, endogenous contrast reveals a tissue's anatomical, functional, metabolic, and histologic properties, and exogenous contrast provides molecular and cellular specificity. The spatial scale of PAT covers organelles, cells, tissues, organs, and small animals. Consequently, PAT is complementary to other imaging modalities in contrast mechanism, penetration, spatial resolution, and temporal resolution. We review the fundamentals of PAT and provide practical guidelines for matching PAT systems with research needs. We also summarize the most promising biomedical applications of PAT, discuss related challenges, and envision PAT's potential to lead to further breakthroughs.

Citing Articles

Current Methodologies to Assess Cellular Senescence in Cancer.

Laouris P, Munoz-Espin D Methods Mol Biol. 2025; 2906:21-44.

PMID: 40082348 DOI: 10.1007/978-1-0716-4426-3_2.


Lightweight sparse optoacoustic image reconstruction via an attention-driven multi-scale wavelet network.

Zhao X, Hu S, Yang Q, Zhang Z, Guo Q, Niu C Photoacoustics. 2025; 42:100695.

PMID: 40046019 PMC: 11880604. DOI: 10.1016/j.pacs.2025.100695.


Application of multispectral optoacoustic tomography for lower limb musculoskeletal sports injuries in adults.

Svensson R, Agergaard A, Sardella T, Reichl C, Hjortshoej M, Bayer M Photoacoustics. 2025; 40:100656.

PMID: 40017825 PMC: 11866168. DOI: 10.1016/j.pacs.2024.100656.


Vascular regional analysis unveils differential responses to anti-angiogenic therapy in pancreatic xenografts through macroscopic photoacoustic imaging.

Sweeney A, Langley A, Xavierselvan M, Shethia R, Solomon P, Arora A Theranostics. 2025; 15(6):2649-2671.

PMID: 39990229 PMC: 11840746. DOI: 10.7150/thno.99361.


Ultrafast filtered back-projection for photoacoustic computed tomography.

Liu S, Tan Z, Shao P, Wang S, Tian C Biomed Opt Express. 2025; 16(2):362-381.

PMID: 39958866 PMC: 11828441. DOI: 10.1364/BOE.540622.


References
1.
Yao J, Wang L, Yang J, Maslov K, Wong T, Li L . High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nat Methods. 2015; 12(5):407-10. PMC: 4428901. DOI: 10.1038/nmeth.3336. View

2.
Pilatou M, Marani E, de Mul F, Steenbergen W . Photoacoustic imaging of brain perfusion on albino rats by using evans blue as contrast agent. Arch Physiol Biochem. 2005; 111(4):389-97. DOI: 10.3109/13813450312331337649. View

3.
Taruttis A, Morscher S, Burton N, Razansky D, Ntziachristos V . Fast multispectral optoacoustic tomography (MSOT) for dynamic imaging of pharmacokinetics and biodistribution in multiple organs. PLoS One. 2012; 7(1):e30491. PMC: 3266258. DOI: 10.1371/journal.pone.0030491. View

4.
Song W, Wei Q, Liu T, Kuai D, Burke J, Jiao S . Integrating photoacoustic ophthalmoscopy with scanning laser ophthalmoscopy, optical coherence tomography, and fluorescein angiography for a multimodal retinal imaging platform. J Biomed Opt. 2012; 17(6):061206. PMC: 3380928. DOI: 10.1117/1.JBO.17.6.061206. View

5.
Strohm E, Berndl E, Kolios M . High frequency label-free photoacoustic microscopy of single cells. Photoacoustics. 2014; 1(3-4):49-53. PMC: 4134899. DOI: 10.1016/j.pacs.2013.08.003. View