» Articles » PMID: 27465315

Organometallic Complex Formed by an Unconventional Radical S-Adenosylmethionine Enzyme

Overview
Journal J Am Chem Soc
Specialty Chemistry
Date 2016 Jul 29
PMID 27465315
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Pyrococcus horikoshii Dph2 (PhDph2) is an unusual radical S-adenosylmethionine (SAM) enzyme involved in the first step of diphthamide biosynthesis. It catalyzes the reaction by cleaving SAM to generate a 3-amino-3-carboxypropyl (ACP) radical. To probe the reaction mechanism, we synthesized a SAM analogue (SAMCA), in which the ACP group of SAM is replaced with a 3-carboxyallyl group. SAMCA is cleaved by PhDph2, yielding a paramagnetic (S = 1/2) species, which is assigned to a complex formed between the reaction product, α-sulfinyl-3-butenoic acid, and the [4Fe-4S] cluster. Electron-nuclear double resonance (ENDOR) measurements with (13)C and (2)H isotopically labeled SAMCA support a π-complex between the C═C double bond of α-sulfinyl-3-butenoic acid and the unique iron of the [4Fe-4S] cluster. This is the first example of a radical SAM-related [4Fe-4S](+) cluster forming an organometallic complex with an alkene, shedding additional light on the mechanism of PhDph2 and expanding our current notions for the reactivity of [4Fe-4S] clusters in radical SAM enzymes.

Citing Articles

The B-independent glycerol dehydratase activating enzyme from Clostridium butyricum cleaves SAM to produce 5'-deoxyadenosine and not 5'-deoxy-5'-(methylthio)adenosine.

Walls W, Moody J, McDaniel E, Villanueva M, Shepard E, Broderick W J Inorg Biochem. 2021; 227:111662.

PMID: 34847521 PMC: 8889718. DOI: 10.1016/j.jinorgbio.2021.111662.


The asymmetric function of Dph1-Dph2 heterodimer in diphthamide biosynthesis.

Dong M, Dando E, Kotliar I, Su X, Dzikovski B, Freed J J Biol Inorg Chem. 2019; 24(6):777-782.

PMID: 31463593 PMC: 6893874. DOI: 10.1007/s00775-019-01702-0.


Analysis of Electrochemical Properties of -Adenosyl-l-methionine and Implications for Its Role in Radical SAM Enzymes.

Miller S, Bandarian V J Am Chem Soc. 2019; 141(28):11019-11026.

PMID: 31283208 PMC: 7059804. DOI: 10.1021/jacs.9b00933.


Methods for Studying the Radical SAM Enzymes in Diphthamide Biosynthesis.

Dong M, Zhang Y, Lin H Methods Enzymol. 2018; 606:421-438.

PMID: 30097101 PMC: 6927669. DOI: 10.1016/bs.mie.2018.04.001.


Mechanistic Studies of Radical SAM Enzymes: Pyruvate Formate-Lyase Activating Enzyme and Lysine 2,3-Aminomutase Case Studies.

Byer A, McDaniel E, Impano S, Broderick W, Broderick J Methods Enzymol. 2018; 606:269-318.

PMID: 30097096 PMC: 8956242. DOI: 10.1016/bs.mie.2018.04.013.


References
1.
Horitani M, Shisler K, Broderick W, Hutcheson R, Duschene K, Marts A . Radical SAM catalysis via an organometallic intermediate with an Fe-[5'-C]-deoxyadenosyl bond. Science. 2016; 352(6287):822-5. PMC: 4929858. DOI: 10.1126/science.aaf5327. View

2.
Wang W, Wang K, Span I, Jauch J, Bacher A, Groll M . Are free radicals involved in IspH catalysis? An EPR and crystallographic investigation. J Am Chem Soc. 2012; 134(27):11225-34. PMC: 3394908. DOI: 10.1021/ja303445z. View

3.
Khatik G, Kumar R, Chakraborti A . Catalyst-free conjugated addition of thiols to alpha,beta-unsaturated carbonyl compounds in water. Org Lett. 2006; 8(11):2433-6. DOI: 10.1021/ol060846t. View

4.
Dong M, Su X, Dzikovski B, Dando E, Zhu X, Du J . Dph3 is an electron donor for Dph1-Dph2 in the first step of eukaryotic diphthamide biosynthesis. J Am Chem Soc. 2014; 136(5):1754-7. PMC: 3985478. DOI: 10.1021/ja4118957. View

5.
Wang W, Wang K, Liu Y, No J, Li J, Nilges M . Bioorganometallic mechanism of action, and inhibition, of IspH. Proc Natl Acad Sci U S A. 2010; 107(10):4522-7. PMC: 2842026. DOI: 10.1073/pnas.0911087107. View