» Articles » PMID: 27449766

The Many Faces of Paediatric Mitochondrial Disease on Neuroimaging

Overview
Specialty Pediatrics
Date 2016 Jul 25
PMID 27449766
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

The knowledge about the genetic spectrum underlying paediatric mitochondrial diseases is rapidly growing. As a consequence, the range of neuroimaging findings associated with mitochondrial diseases became extremely broad. This has important implications for radiologists and clinicians involved in the care of these patients. Here, we provide a condensed overview of brain magnetic resonance imaging (MRI) findings in children with genetically confirmed mitochondrial diseases. The neuroimaging spectrum ranges from classical Leigh syndrome with symmetrical lesions in basal ganglia and/or brain stem to structural abnormalities including cerebellar hypoplasia and corpus callosum dysgenesis. We highlight that, although some imaging patterns can be suggestive of a genetically defined mitochondrial syndrome, brain MRI-based candidate gene prioritization is only successful in a subset of patients.

Citing Articles

MRI predictors of long-term outcomes of neonatal hypoxic ischaemic encephalopathy: a primer for radiologists.

Hung S, Tu Y, Hunter S, Guimaraes C Br J Radiol. 2024; 97(1158):1067-1077.

PMID: 38407350 PMC: 11654721. DOI: 10.1093/bjr/tqae048.


Leukodystrophy Associated with Mitochondrial Complex 1 Deficiency Due to Mutation in NUBPL Gene-An Unusual Follow-Up Finding.

Peter S B, Vandana G S Indian J Radiol Imaging. 2023; 33(1):132-135.

PMID: 36855717 PMC: 9968539. DOI: 10.1055/s-0042-1758195.


Malate dehydrogenase 2 deficiency is an emerging cause of pediatric epileptic encephalopathy with a recognizable biochemical signature.

Priestley J, Pace L, Sen K, Aggarwal A, Alves C, Campbell I Mol Genet Metab Rep. 2022; 33:100931.

PMID: 36420423 PMC: 9676216. DOI: 10.1016/j.ymgmr.2022.100931.


Human iPSC-derived cerebral organoids model features of Leigh syndrome and reveal abnormal corticogenesis.

Romero-Morales A, Robertson G, Rastogi A, Rasmussen M, Temuri H, McElroy G Development. 2022; 149(20).

PMID: 35792828 PMC: 9357378. DOI: 10.1242/dev.199914.


Human COQ4 deficiency: delineating the clinical, metabolic and neuroimaging phenotypes.

Laugwitz L, Seibt A, Herebian D, Peralta S, Kienzle I, Buchert R J Med Genet. 2021; 59(9):878-887.

PMID: 34656997 PMC: 9807242. DOI: 10.1136/jmedgenet-2021-107729.


References
1.
Iizuka T, Sakai F, Suzuki N, Hata T, Tsukahara S, Fukuda M . Neuronal hyperexcitability in stroke-like episodes of MELAS syndrome. Neurology. 2002; 59(6):816-24. DOI: 10.1212/wnl.59.6.816. View

2.
Yatsuga S, Povalko N, Nishioka J, Katayama K, Kakimoto N, Matsuishi T . MELAS: a nationwide prospective cohort study of 96 patients in Japan. Biochim Biophys Acta. 2011; 1820(5):619-24. DOI: 10.1016/j.bbagen.2011.03.015. View

3.
Brito S, Thompson K, Campistol J, Colomer J, Hardy S, He L . Long-term survival in a child with severe encephalopathy, multiple respiratory chain deficiency and GFM1 mutations. Front Genet. 2015; 6:102. PMC: 4369643. DOI: 10.3389/fgene.2015.00102. View

4.
Danhauser K, Haack T, Alhaddad B, Melcher M, Seibt A, Strom T . EARS2 mutations cause fatal neonatal lactic acidosis, recurrent hypoglycemia and agenesis of corpus callosum. Metab Brain Dis. 2016; 31(3):717-21. DOI: 10.1007/s11011-016-9793-2. View

5.
Siddiq I, Widjaja E, Tein I . Clinical and radiologic reversal of stroke-like episodes in MELAS with high-dose L-arginine. Neurology. 2015; 85(2):197-8. PMC: 4515037. DOI: 10.1212/WNL.0000000000001726. View