» Articles » PMID: 27444189

Molecular Design of Semiconducting Polymers for High-Performance Organic Electrochemical Transistors

Overview
Journal J Am Chem Soc
Specialty Chemistry
Date 2016 Jul 23
PMID 27444189
Citations 50
Authors
Affiliations
Soon will be listed here.
Abstract

The organic electrochemical transistor (OECT), capable of transducing small ionic fluxes into electronic signals in an aqueous environment, is an ideal device to utilize in bioelectronic applications. Currently, most OECTs are fabricated with commercially available conducting poly(3,4-ethylenedioxythiophene) (PEDOT)-based suspensions and are therefore operated in depletion mode. Here, we present a series of semiconducting polymers designed to elucidate important structure-property guidelines required for accumulation mode OECT operation. We discuss key aspects relating to OECT performance such as ion and hole transport, electrochromic properties, operational voltage, and stability. The demonstration of our molecular design strategy is the fabrication of accumulation mode OECTs that clearly outperform state-of-the-art PEDOT-based devices, and show stability under aqueous operation without the need for formulation additives and cross-linkers.

Citing Articles

Selective and Sensitive OECT Sensors with Doped MIP-Modified GCE/MWCNT Gate Electrodes for Real-Time Detection of Serotonin.

Mehrehjedy A, Eaton J, Tang K, Upreti S, Sanders A, LaRoux V ACS Omega. 2025; 10(4):4154-4162.

PMID: 39926515 PMC: 11800035. DOI: 10.1021/acsomega.4c10918.


Advanced Wearable Devices for Monitoring Sweat Biochemical Markers in Athletic Performance: A Comprehensive Review.

Assalve G, Lunetti P, di Cagno A, De Luca E, Aldegheri S, Zara V Biosensors (Basel). 2024; 14(12).

PMID: 39727839 PMC: 11674680. DOI: 10.3390/bios14120574.


The hierarchical structure of organic mixed ionic-electronic conductors and its evolution in water.

Tsarfati Y, Bustillo K, Savitzky B, Balhorn L, Quill T, Marks A Nat Mater. 2024; 24(1):101-108.

PMID: 39333273 DOI: 10.1038/s41563-024-02016-6.


In Situ Functionalization of Polar Polythiophene-Based Organic Electrochemical Transistor to Interface In Vitro Models.

Buchmann S, Stoop P, Roekevisch K, Jain S, Kroon R, Muller C ACS Appl Mater Interfaces. 2024; 16(40):54292-54303.

PMID: 39327895 PMC: 11472309. DOI: 10.1021/acsami.4c09197.


Ion sensors based on organic semiconductors acting as quasi-reference electrodes.

Yamashita Y, Hayakawa H, Wang P, Makita T, Kumagai S, Watanabe S Proc Natl Acad Sci U S A. 2024; 121(40):e2405933121.

PMID: 39312652 PMC: 11459129. DOI: 10.1073/pnas.2405933121.


References
1.
Simon D, Kurup S, Larsson K, Hori R, Tybrandt K, Goiny M . Organic electronics for precise delivery of neurotransmitters to modulate mammalian sensory function. Nat Mater. 2009; 8(9):742-6. DOI: 10.1038/nmat2494. View

2.
Khodagholy D, Doublet T, Quilichini P, Gurfinkel M, Leleux P, Ghestem A . In vivo recordings of brain activity using organic transistors. Nat Commun. 2013; 4:1575. PMC: 3615373. DOI: 10.1038/ncomms2573. View

3.
Ashraf R, Meager I, Nikolka M, Kirkus M, Planells M, Schroeder B . Chalcogenophene comonomer comparison in small band gap diketopyrrolopyrrole-based conjugated polymers for high-performing field-effect transistors and organic solar cells. J Am Chem Soc. 2014; 137(3):1314-21. DOI: 10.1021/ja511984q. View

4.
Inal S, Rivnay J, Leleux P, Ferro M, Ramuz M, Brendel J . A high transconductance accumulation mode electrochemical transistor. Adv Mater. 2014; 26(44):7450-5. DOI: 10.1002/adma.201403150. View

5.
Sirringhaus H . 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv Mater. 2014; 26(9):1319-35. PMC: 4515091. DOI: 10.1002/adma.201304346. View