» Articles » PMID: 27438816

Protein-Directed Dynamic Combinatorial Chemistry: A Guide to Protein Ligand and Inhibitor Discovery

Overview
Journal Molecules
Publisher MDPI
Specialty Biology
Date 2016 Jul 21
PMID 27438816
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Protein-directed dynamic combinatorial chemistry is an emerging technique for efficient discovery of novel chemical structures for binding to a target protein. Typically, this method relies on a library of small molecules that react reversibly with each other to generate a combinatorial library. The components in the combinatorial library are at equilibrium with each other under thermodynamic control. When a protein is added to the equilibrium mixture, and if the protein interacts with any components of the combinatorial library, the position of the equilibrium will shift and those components that interact with the protein will be amplified, which can then be identified by a suitable biophysical technique. Such information is useful as a starting point to guide further organic synthesis of novel protein ligands and enzyme inhibitors. This review uses literature examples to discuss the practicalities of applying this method to inhibitor discovery, in particular, the set-up of the combinatorial library, the reversible reactions that may be employed, and the choice of detection methods to screen protein ligands from a mixture of reversibly forming molecules.

Citing Articles

Recent advances in DNA-encoded dynamic libraries.

Shi B, Zhou Y, Li X RSC Chem Biol. 2022; 3(4):407-419.

PMID: 35441147 PMC: 8985084. DOI: 10.1039/d2cb00007e.


Generative network complex (GNC) for drug discovery.

Grow C, Gao K, Nguyen D, Wei G Commun Inf Syst. 2021; 19(3):241-277.

PMID: 34257523 PMC: 8274326. DOI: 10.4310/cis.2019.v19.n3.a2.


Hit-optimization using target-directed dynamic combinatorial chemistry: development of inhibitors of the anti-infective target 1-deoxy-d-xylulose-5-phosphate synthase.

Jumde R, Guardigni M, Gierse R, Alhayek A, Zhu D, Hamid Z Chem Sci. 2021; 12(22):7775-7785.

PMID: 34168831 PMC: 8188608. DOI: 10.1039/d1sc00330e.


Generative Network Complex for the Automated Generation of Drug-like Molecules.

Gao K, Nguyen D, Tu M, Wei G J Chem Inf Model. 2020; 60(12):5682-5698.

PMID: 32686938 PMC: 8142330. DOI: 10.1021/acs.jcim.0c00599.


Proteintemplat-gesteuerte Fragmentligationen - von der molekularen Erkennung zur Wirkstofffindung.

Jaegle M, Wong E, Tauber C, Nawrotzky E, Arkona C, Rademann J Angew Chem Weinheim Bergstr Ger. 2020; 129(26):7464-7485.

PMID: 32313319 PMC: 7159557. DOI: 10.1002/ange.201610372.


References
1.
Klekota B, Miller B . Dynamic diversity and small-molecule evolution: a new paradigm for ligand identification. Trends Biotechnol. 1999; 17(5):205-9. DOI: 10.1016/s0167-7799(99)01305-0. View

2.
Karan I , Miller . Dynamic diversity in drug discovery: Putting small-molecule evolution to work. Drug Discov Today. 2000; 5(2):67-75. DOI: 10.1016/s1359-6446(99)01431-2. View

3.
Drews J . Drug discovery: a historical perspective. Science. 2000; 287(5460):1960-4. DOI: 10.1126/science.287.5460.1960. View

4.
Lehn J, Eliseev A . Dynamic combinatorial chemistry. Science. 2001; 291(5512):2331-2. DOI: 10.1126/science.1060066. View

5.
Ramstrom O, Lehn J . In situ generation and screening of a dynamic combinatorial carbohydrate library against concanavalin A. Chembiochem. 2002; 1(1):41-8. DOI: 10.1002/1439-7633(20000703)1:1<41::AID-CBIC41>3.0.CO;2-L. View