» Articles » PMID: 27435112

Photocatalytic Oxidation of Methane over Silver Decorated Zinc Oxide Nanocatalysts

Overview
Journal Nat Commun
Specialty Biology
Date 2016 Jul 21
PMID 27435112
Citations 47
Authors
Affiliations
Soon will be listed here.
Abstract

The search for active catalysts that efficiently oxidize methane under ambient conditions remains a challenging task for both C1 utilization and atmospheric cleansing. Here, we show that when the particle size of zinc oxide is reduced down to the nanoscale, it exhibits high activity for methane oxidation under simulated sunlight illumination, and nano silver decoration further enhances the photo-activity via the surface plasmon resonance. The high quantum yield of 8% at wavelengths <400 nm and over 0.1% at wavelengths ∼470 nm achieved on the silver decorated zinc oxide nanostructures shows great promise for atmospheric methane oxidation. Moreover, the nano-particulate composites can efficiently photo-oxidize other small molecular hydrocarbons such as ethane, propane and ethylene, and in particular, can dehydrogenize methane to generate ethane, ethylene and so on. On the basis of the experimental results, a two-step photocatalytic reaction process is suggested to account for the methane photo-oxidation.

Citing Articles

Photothermal direct methane conversion to formaldehyde at the gas-solid interface under ambient pressure.

Wang Y, Zhang Y, Wang X, Liu Y, Wu Z Nat Commun. 2025; 16(1):2550.

PMID: 40089470 DOI: 10.1038/s41467-025-57854-y.


Enhanced Photocatalytic Oxidative Coupling of Methane over Metal-Loaded TiO Nanowires.

Song S, Xiang J, Kang H, Yang F Molecules. 2025; 30(2.

PMID: 39860078 PMC: 11767848. DOI: 10.3390/molecules30020206.


Methane oxidation to ethanol by a molecular junction photocatalyst.

Xie J, Fu C, Quesne M, Guo J, Wang C, Xiong L Nature. 2025; 639(8054):368-374.

PMID: 39832717 PMC: 11903337. DOI: 10.1038/s41586-025-08630-x.


Potential Air Quality Side-Effects of Emitting HO to Enhance Methane Oxidation as a Climate Solution.

Mayhew A, Haskins J Environ Sci Technol. 2025; 59(1):679-688.

PMID: 39752549 PMC: 11741000. DOI: 10.1021/acs.est.4c11697.


Electronic asymmetry of lattice oxygen sites in ZnO promotes the photocatalytic oxidative coupling of methane.

Sun M, Chen Y, Fan X, Li D, Song J, Yu K Nat Commun. 2024; 15(1):9900.

PMID: 39548121 PMC: 11568292. DOI: 10.1038/s41467-024-54226-w.


References
1.
Linic S, Christopher P, Ingram D . Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater. 2011; 10(12):911-21. DOI: 10.1038/nmat3151. View

2.
Schmale J, Shindell D, von Schneidemesser E, Chabay I, Lawrence M . Air pollution: clean up our skies. Nature. 2014; 515(7527):335-7. DOI: 10.1038/515335a. View

3.
Han J, Qiu W, Gao W . Potential dissolution and photo-dissolution of ZnO thin films. J Hazard Mater. 2010; 178(1-3):115-22. DOI: 10.1016/j.jhazmat.2010.01.050. View

4.
In S, Nielsen M, Vesborg P, Hou Y, Abrams B, Henriksen T . Photocatalytic methane decomposition over vertically aligned transparent TiO2 nanotube arrays. Chem Commun (Camb). 2011; 47(9):2613-5. DOI: 10.1039/c0cc02570d. View

5.
Zarur , Ying . Reverse microemulsion synthesis of nanostructured complex oxides for catalytic combustion. Nature. 2000; 403(6765):65-7. DOI: 10.1038/47450. View