» Articles » PMID: 27416602

Recursive Bayesian Coding for BCIs

Overview
Publisher IEEE
Date 2016 Jul 15
PMID 27416602
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Brain-Computer Interfaces (BCIs) seek to infer some task symbol, a task relevant instruction, from brain symbols, classifiable physiological states. For example, in a motor imagery robot control task a user would indicate their choice from a dictionary of task symbols (rotate arm left, grasp, etc.) by selecting from a smaller dictionary of brain symbols (imagined left or right hand movements). We examine how a BCI infers a task symbol using selections of brain symbols. We offer a recursive Bayesian decision framework which incorporates context prior distributions (e.g., language model priors in spelling applications), accounts for varying brain symbol accuracy and is robust to single brain symbol query errors. This framework is paired with Maximum Mutual Information (MMI) coding which maximizes a generalization of ITR. Both are applicable to any discrete task and brain phenomena (e.g., P300, SSVEP, MI). To demonstrate the efficacy of our approach we perform SSVEP "Shuffle" Speller experiments and compare our recursive coding scheme with traditional decision tree methods including Huffman coding. MMI coding leverages the asymmetry of the classifier's mistakes across a particular user's SSVEP responses; in doing so it offers a 33% increase in letter accuracy though it is 13% slower in our experiment.

Citing Articles

SSVEP BCI and Eye Tracking Use by Individuals With Late-Stage ALS and Visual Impairments.

Peters B, Bedrick S, Dudy S, Eddy B, Higger M, Kinsella M Front Hum Neurosci. 2020; 14:595890.

PMID: 33328941 PMC: 7715037. DOI: 10.3389/fnhum.2020.595890.


Workshops of the Seventh International Brain-Computer Interface Meeting: Not Getting Lost in Translation.

Huggins J, Guger C, Aarnoutse E, Allison B, Anderson C, Bedrick S Brain Comput Interfaces (Abingdon). 2020; 6(3):71-101.

PMID: 33033729 PMC: 7539697. DOI: 10.1080/2326263X.2019.1697163.


Behind the Scenes of Noninvasive Brain-Computer Interfaces: A Review of Electroencephalography Signals, How They Are Recorded, and Why They Matter.

Pitt K, Brumberg J, Burnison J, Mehta J, Kidwai J Perspect ASHA Spec Interest Groups. 2020; 4(6):1622-1636.

PMID: 32529035 PMC: 7288588. DOI: 10.1044/2019_pers-19-00059.


Human visual skills for brain-computer interface use: a tutorial.

Fried-Oken M, Kinsella M, Peters B, Eddy B, Wojciechowski B Disabil Rehabil Assist Technol. 2020; 15(7):799-809.

PMID: 32476516 PMC: 7529781. DOI: 10.1080/17483107.2020.1754929.


On Analysis of Active Querying for Recursive State Estimation.

Kocanaogullari A, Akcakay M, Erdogmus D IEEE Signal Process Lett. 2019; 25(6):743-747.

PMID: 31871396 PMC: 6927333. DOI: 10.1109/LSP.2018.2823271.


References
1.
Xu M, Chen L, Zhang L, Qi H, Ma L, Tang J . A visual parallel-BCI speller based on the time-frequency coding strategy. J Neural Eng. 2014; 11(2):026014. DOI: 10.1088/1741-2560/11/2/026014. View

2.
Martens S, Leiva J . A generative model approach for decoding in the visual event-related potential-based brain-computer interface speller. J Neural Eng. 2010; 7(2):26003. DOI: 10.1088/1741-2560/7/2/026003. View

3.
Zhang Y, Zhou G, Jin J, Wang X, Cichocki A . Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis. Int J Neural Syst. 2014; 24(4):1450013. DOI: 10.1142/S0129065714500130. View

4.
Polprasert C, Kukieattikool P, Demeechai T, Ritcey J, Siwamogsatham S . New stimulation pattern design to improve P300-based matrix speller performance at high flash rate. J Neural Eng. 2013; 10(3):036012. DOI: 10.1088/1741-2560/10/3/036012. View

5.
Akcakaya M, Peters B, Moghadamfalahi M, Mooney A, Orhan U, Oken B . Noninvasive brain-computer interfaces for augmentative and alternative communication. IEEE Rev Biomed Eng. 2014; 7:31-49. PMC: 6525622. DOI: 10.1109/RBME.2013.2295097. View