» Articles » PMID: 27404808

The Biofilm Inhibitor Carolacton Inhibits Planktonic Growth of Virulent Pneumococci Via a Conserved Target

Overview
Journal Sci Rep
Specialty Science
Date 2016 Jul 13
PMID 27404808
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

New antibacterial compounds, preferentially exploiting novel cellular targets, are urgently needed to fight the increasing resistance of pathogens against conventional antibiotics. Here we demonstrate that Carolacton, a myxobacterial secondary metabolite previously shown to damage Streptococcus mutans biofilms, inhibits planktonic growth of Streptococcus pneumoniae TIGR4 and multidrug-resistant clinical isolates of serotype 19A at nanomolar concentrations. A Carolacton diastereomer is inactive in both streptococci, indicating a highly specific interaction with a conserved cellular target. S. mutans requires the eukaryotic-like serine/threonine protein kinase PknB and the cysteine metabolism regulator CysR for susceptibility to Carolacton, whereas their homologues are not needed in S. pneumoniae, suggesting a specific function for S. mutans biofilms only. A bactericidal effect of Carolacton was observed for S. pneumoniae TIGR4, with a reduction of cell numbers by 3 log units. The clinical pneumonia isolate Sp49 showed immediate growth arrest and cell lysis, suggesting a bacteriolytic effect of Carolacton. Carolacton treatment caused a reduction in membrane potential, but not membrane integrity, and transcriptome analysis revealed compensatory reactions of the cell. Our data show that Carolacton might have potential for treating pneumococcal infections.

Citing Articles

In Situ Biofilm Affinity-Based Protein Profiling Identifies the Streptococcal Hydrolase GbpB as the Target of a Carolacton-Inspired Chemical Probe.

Scharnow A, Solinski A, Rowe S, Drechsel I, Zhang H, Shaw E J Am Chem Soc. 2024; 146(33):23449-23456.

PMID: 39133525 PMC: 11345752. DOI: 10.1021/jacs.4c06658.


An Update on Pharmacological Relevance and Chemical Synthesis of Natural Products and Derivatives with Anti SARS-CoV-2 Activity.

Shagufta , Ahmad I ChemistrySelect. 2021; 6(42):11502-11527.

PMID: 34909460 PMC: 8661826. DOI: 10.1002/slct.202103301.


Insights into 6S RNA in lactic acid bacteria (LAB).

Cataldo P, Klemm P, Thuring M, Saavedra L, Hebert E, Hartmann R BMC Genom Data. 2021; 22(1):29.

PMID: 34479493 PMC: 8414754. DOI: 10.1186/s12863-021-00983-2.


Natural Products and Derivatives Targeting at Cancer Energy Metabolism: A Potential Treatment Strategy.

Wang Q, Li M, Li C, Gu X, Zheng M, Chen L Curr Med Sci. 2020; 40(2):205-217.

PMID: 32337682 DOI: 10.1007/s11596-020-2165-5.


Deep sequencing of biofilm microbiomes on dental composite materials.

Conrads G, Wendt L, Hetrodt F, Deng Z, Pieper D, Abdelbary M J Oral Microbiol. 2019; 11(1):1617013.

PMID: 31143408 PMC: 6522937. DOI: 10.1080/20002297.2019.1617013.


References
1.
Mann B, van Opijnen T, Wang J, Obert C, Wang Y, Carter R . Control of virulence by small RNAs in Streptococcus pneumoniae. PLoS Pathog. 2012; 8(7):e1002788. PMC: 3395615. DOI: 10.1371/journal.ppat.1002788. View

2.
Bessman M, Frick D, OHandley S . The MutT proteins or "Nudix" hydrolases, a family of versatile, widely distributed, "housecleaning" enzymes. J Biol Chem. 1996; 271(41):25059-62. DOI: 10.1074/jbc.271.41.25059. View

3.
Laemmli U . Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970; 227(5259):680-5. DOI: 10.1038/227680a0. View

4.
Tettelin H, Nelson K, Paulsen I, Eisen J, Read T, Peterson S . Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science. 2001; 293(5529):498-506. DOI: 10.1126/science.1061217. View

5.
Lin-Chao S, Wei C, Lin Y . RNase E is required for the maturation of ssrA RNA and normal ssrA RNA peptide-tagging activity. Proc Natl Acad Sci U S A. 1999; 96(22):12406-11. PMC: 22933. DOI: 10.1073/pnas.96.22.12406. View