Jiang B, Li Y, Shi J, Chalasa D, Zhang L, Wu S
Int J Mol Sci. 2025; 26(4).
PMID: 40004124
PMC: 11854956.
DOI: 10.3390/ijms26041660.
Zhang D, Ma Y, Naz M, Ahmed N, Zhang L, Zhou J
Genes (Basel). 2024; 15(7).
PMID: 39062737
PMC: 11276256.
DOI: 10.3390/genes15070958.
Yuan Y, Pang X, Pang J, Wang Q, Zhou M, Lu Y
Biology (Basel). 2024; 13(3).
PMID: 38534452
PMC: 10968399.
DOI: 10.3390/biology13030183.
Yadav A, Mathan J, Dubey A, Singh A
Noncoding RNA. 2024; 10(1).
PMID: 38392968
PMC: 10893181.
DOI: 10.3390/ncrna10010013.
Dhandhanya U, Mukhopadhyay K, Kumar M
Mol Biol Rep. 2024; 51(1):162.
PMID: 38252357
DOI: 10.1007/s11033-023-09138-1.
LncRNAs exert indispensable roles in orchestrating the interaction among diverse noncoding RNAs and enrich the regulatory network of plant growth and its adaptive environmental stress response.
Zhang L, Lin T, Zhu G, Wu B, Zhang C, Zhu H
Hortic Res. 2023; 10(12):uhad234.
PMID: 38156284
PMC: 10753412.
DOI: 10.1093/hr/uhad234.
Genome-wide identification and characterization of circRNAs in wheat tiller.
Wu F, Wang Z, Zhou W, Liu Y, Shi H, Gou X
Theor Appl Genet. 2023; 136(5):102.
PMID: 37027036
DOI: 10.1007/s00122-023-04277-2.
Identification and characterization of CircRNA-associated CeRNA networks in moso bamboo under nitrogen stress.
Zhu C, Yuan T, Yang K, Liu Y, Li Y, Gao Z
BMC Plant Biol. 2023; 23(1):142.
PMID: 36918810
PMC: 10012455.
DOI: 10.1186/s12870-023-04155-5.
Evolutionary Landscape of Tea Circular RNAs and Its Contribution to Chilling Tolerance of Tea Plant.
Huang J, Wang Y, Yu J, Li F, Yi L, Li Y
Int J Mol Sci. 2023; 24(2).
PMID: 36674993
PMC: 9861842.
DOI: 10.3390/ijms24021478.
Identification, biogenesis, function, and mechanism of action of circular RNAs in plants.
Liu R, Ma Y, Guo T, Li G
Plant Commun. 2022; 4(1):100430.
PMID: 36081344
PMC: 9860190.
DOI: 10.1016/j.xplc.2022.100430.
The Intersection of Non-Coding RNAs Contributes to Forest Trees' Response to Abiotic Stress.
Xiao D, Chen M, Yang X, Bao H, Yang Y, Wang Y
Int J Mol Sci. 2022; 23(12).
PMID: 35742808
PMC: 9223653.
DOI: 10.3390/ijms23126365.
Identification and Characterization of Circular RNAs in in Response to .
Liu H, Nwafor C, Piao Y, Li X, Zhan Z, Piao Z
Int J Mol Sci. 2022; 23(10).
PMID: 35628175
PMC: 9141718.
DOI: 10.3390/ijms23105369.
Low Light Conditions Alter Genome-Wide Profiles of Circular RNAs in Rice Grains during Grain Filling.
Chen H, Wang T, Gong Z, Lu H, Chen Y, Deng F
Plants (Basel). 2022; 11(9).
PMID: 35567273
PMC: 9102277.
DOI: 10.3390/plants11091272.
Expression Characteristics in Roots, Phloem, Leaves, Flowers and Fruits of Apple circRNA.
Wang D, Gao Y, Sun S, Li L, Wang K
Genes (Basel). 2022; 13(4).
PMID: 35456518
PMC: 9030095.
DOI: 10.3390/genes13040712.
Drought tolerance improvement in : an insight into "OMICS" approaches and genome editing.
Taheri S, Gantait S, Azizi P, Mazumdar P
3 Biotech. 2022; 12(3):63.
PMID: 35186660
PMC: 8825918.
DOI: 10.1007/s13205-022-03132-3.
Genome-Wide Characterization of Salt-Responsive miRNAs, circRNAs and Associated ceRNA Networks in Tomatoes.
Wang Z, Li N, Yu Q, Wang H
Int J Mol Sci. 2021; 22(22).
PMID: 34830118
PMC: 8625345.
DOI: 10.3390/ijms222212238.
Genome-Wide Identification of Circular RNAs Potentially Involved in the Biosynthesis of Secondary Metabolites in .
Jiang M, Chen H, Du Q, Wang L, Liu X, Liu C
Front Genet. 2021; 12:645115.
PMID: 34804110
PMC: 8602197.
DOI: 10.3389/fgene.2021.645115.
NGS Methodologies and Computational Algorithms for the Prediction and Analysis of Plant Circular RNAs.
Terron-Camero L, Andres-Leon E
Methods Mol Biol. 2021; 2362:119-145.
PMID: 34195961
DOI: 10.1007/978-1-0716-1645-1_8.
Molecular and Hormonal Mechanisms Regulating Fleshy Fruit Ripening.
Li S, Chen K, Grierson D
Cells. 2021; 10(5).
PMID: 34066675
PMC: 8151651.
DOI: 10.3390/cells10051136.
Role of non-coding RNAs in plant immunity.
Song L, Fang Y, Chen L, Wang J, Chen X
Plant Commun. 2021; 2(3):100180.
PMID: 34027394
PMC: 8132121.
DOI: 10.1016/j.xplc.2021.100180.