» Articles » PMID: 27396625

Homologous Recombination-dependent Repair of Telomeric DSBs in Proliferating Human Cells

Overview
Journal Nat Commun
Specialty Biology
Date 2016 Jul 12
PMID 27396625
Citations 48
Authors
Affiliations
Soon will be listed here.
Abstract

Telomeres prevent chromosome ends from being recognized as double-stranded breaks (DSBs). Meanwhile, G/C-rich repetitive telomeric DNA is susceptible to attack by DNA-damaging agents. How cells balance the need to protect DNA ends and the need to repair DNA lesions in telomeres is unknown. Here we show that telomeric DSBs are efficiently repaired in proliferating cells, but are irreparable in stress-induced and replicatively senescent cells. Using the CRISPR-Cas9 technique, we specifically induce DSBs at telomeric or subtelomeric regions. We find that DSB repair (DSBR) at subtelomeres occurs in an error-prone manner resulting in small deletions, suggestive of NHEJ. However, DSBR in telomeres involves 'telomere-clustering', 3'-protruding C-rich telomeric ssDNA, and HR between sister-chromatid or interchromosomal telomeres. DSBR in telomeres is suppressed by deletion or inhibition of Rad51. These findings reveal proliferation-dependent DSBR in telomeres and suggest that telomeric HR, which is normally constitutively suppressed, is activated in the context of DSBR.

Citing Articles

LAP2α orchestrates alternative lengthening of telomeres suppression through telomeric heterochromatin regulation with HDAC1: unveiling a potential therapeutic target.

Wang B, Kou H, Wang Y, Zhang Q, Jiang D, Wang J Cell Death Dis. 2024; 15(10):761.

PMID: 39426946 PMC: 11490576. DOI: 10.1038/s41419-024-07116-4.


Aging, Cancer, and Inflammation: The Telomerase Connection.

Boccardi V, Marano L Int J Mol Sci. 2024; 25(15).

PMID: 39126110 PMC: 11313618. DOI: 10.3390/ijms25158542.


Therapy-induced senescence through the redox lens.

Robert M, Kennedy B, Crasta K Redox Biol. 2024; 74:103228.

PMID: 38865902 PMC: 11215421. DOI: 10.1016/j.redox.2024.103228.


The crosstalk between telomeres and DNA repair mechanisms: an overview to mammalian somatic cells, germ cells, and preimplantation embryos.

Tire B, Talibova G, Ozturk S J Assist Reprod Genet. 2024; 41(2):277-291.

PMID: 38165506 PMC: 10894803. DOI: 10.1007/s10815-023-03008-2.


Telomeric DNA breaks in human induced pluripotent stem cells trigger ATR-mediated arrest and telomerase-independent telomere damage repair.

Estep K, Tobias J, Fernandez R, Beveridge B, Johnson F J Mol Cell Biol. 2023; 16(3).

PMID: 37771090 PMC: 11429528. DOI: 10.1093/jmcb/mjad058.


References
1.
Oikawa S, Kawanishi S . Site-specific DNA damage at the GGG sequence by UVA involves acceleration of telomere shortening. Biochemistry. 2001; 40(15):4763-8. DOI: 10.1021/bi002721g. View

2.
Zhu X, Niedernhofer L, Kuster B, Mann M, Hoeijmakers J, de Lange T . ERCC1/XPF removes the 3' overhang from uncapped telomeres and represses formation of telomeric DNA-containing double minute chromosomes. Mol Cell. 2003; 12(6):1489-98. DOI: 10.1016/s1097-2765(03)00478-7. View

3.
Chen B, Gilbert L, Cimini B, Schnitzbauer J, Zhang W, Li G . Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell. 2013; 155(7):1479-91. PMC: 3918502. DOI: 10.1016/j.cell.2013.12.001. View

4.
Huang F, Motlekar N, Burgwin C, Napper A, Diamond S, Mazin A . Identification of specific inhibitors of human RAD51 recombinase using high-throughput screening. ACS Chem Biol. 2011; 6(6):628-35. PMC: 3117970. DOI: 10.1021/cb100428c. View

5.
Jackson S, Bartek J . The DNA-damage response in human biology and disease. Nature. 2009; 461(7267):1071-8. PMC: 2906700. DOI: 10.1038/nature08467. View