» Articles » PMID: 27389779

De Novo Missense Variants in HECW2 Are Associated with Neurodevelopmental Delay and Hypotonia

Abstract

Background: The causes of intellectual disability (ID) are diverse and de novo mutations are increasingly recognised to account for a significant proportion of ID.

Methods And Results: In this study, we performed whole exome sequencing on a large cohort of patients with ID or neurodevelopmental delay and identified four novel de novo predicted deleterious missense variants in HECW2 in six probands with ID/developmental delay and hypotonia. Other common features include seizures, strabismus, nystagmus, cortical visual impairment and dysmorphic facial features. HECW2 is an ubiquitin ligase that stabilises p73, a crucial mediator of neurodevelopment and neurogenesis.

Conclusion: This study implicates pathogenic genetic variants in HECW2 as potential causes of neurodevelopmental disorders in humans.

Citing Articles

Profiling immune cell-related gene features and immunoregulatory ceRNA in ischemic stroke.

Li Y, Liu S, Wen L, Zhang L, Lei X, Zhang Y Mol Biomed. 2024; 5(1):72.

PMID: 39690389 PMC: 11652561. DOI: 10.1186/s43556-024-00237-4.


E3 ubiquitin ligase HECW2: a promising target for tumour therapy.

Shen H, Kou Q, Shao L, Zhang J, Li F Cancer Cell Int. 2024; 24(1):374.

PMID: 39529070 PMC: 11556196. DOI: 10.1186/s12935-024-03563-3.


A multi-omic single-cell landscape of cellular diversification in the developing human cerebral cortex.

Tian Y, Wu X, Luo S, Xiong D, Liu R, Hu L Comput Struct Biotechnol J. 2024; 23:2173-2189.

PMID: 38827229 PMC: 11141146. DOI: 10.1016/j.csbj.2024.05.019.


HECW2 promotes the progression and chemoresistance of colorectal cancer via AKT/mTOR signaling activation by mediating the ubiquitin-proteasome degradation of lamin B1.

Li F, Wang L, Wang Y, Shen H, Kou Q, Shen C J Cancer. 2023; 14(15):2820-2832.

PMID: 37781079 PMC: 10539569. DOI: 10.7150/jca.87545.


A novel HECW2 variant in an infant with congenital long QT syndrome.

Imanishi R, Nakau K, Shimada S, Oka H, Takeguchi R, Tanaka R Hum Genome Var. 2023; 10(1):17.

PMID: 37280227 PMC: 10244414. DOI: 10.1038/s41439-023-00245-w.


References
1.
Srivastava A, Schwartz C . Intellectual disability and autism spectrum disorders: causal genes and molecular mechanisms. Neurosci Biobehav Rev. 2014; 46 Pt 2:161-74. PMC: 4185273. DOI: 10.1016/j.neubiorev.2014.02.015. View

2.
Petrovski S, Wang Q, Heinzen E, Allen A, Goldstein D . Genic intolerance to functional variation and the interpretation of personal genomes. PLoS Genet. 2013; 9(8):e1003709. PMC: 3749936. DOI: 10.1371/journal.pgen.1003709. View

3.
Hu W, Chahrour M, Walsh C . The diverse genetic landscape of neurodevelopmental disorders. Annu Rev Genomics Hum Genet. 2014; 15:195-213. PMC: 10591257. DOI: 10.1146/annurev-genom-090413-025600. View

4.
Konishi Y, Stegmuller J, Matsuda T, Bonni S, Bonni A . Cdh1-APC controls axonal growth and patterning in the mammalian brain. Science. 2004; 303(5660):1026-30. DOI: 10.1126/science.1093712. View

5.
Gilissen C, Hehir-Kwa J, Tjwan Thung D, van de Vorst M, van Bon B, Willemsen M . Genome sequencing identifies major causes of severe intellectual disability. Nature. 2014; 511(7509):344-7. DOI: 10.1038/nature13394. View