» Articles » PMID: 27384505

Ionoacoustic Tomography of the Proton Bragg Peak in Combination with Ultrasound and Optoacoustic Imaging

Overview
Journal Sci Rep
Specialty Science
Date 2016 Jul 8
PMID 27384505
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

Ions provide a more advantageous dose distribution than photons for external beam radiotherapy, due to their so-called inverse depth dose deposition and, in particular a characteristic dose maximum at their end-of-range (Bragg peak). The favorable physical interaction properties enable selective treatment of tumors while sparing surrounding healthy tissue, but optimal clinical use requires accurate monitoring of Bragg peak positioning inside tissue. We introduce ionoacoustic tomography based on detection of ion induced ultrasound waves as a technique to provide feedback on the ion beam profile. We demonstrate for 20 MeV protons that ion range imaging is possible with submillimeter accuracy and can be combined with clinical ultrasound and optoacoustic tomography of similar precision. Our results indicate a simple and direct possibility to correlate, in-vivo and in real-time, the conventional ultrasound echo of the tumor region with ionoacoustic tomography. Combined with optoacoustic tomography it offers a well suited pre-clinical imaging system.

Citing Articles

Real-time tracking of the Bragg peak during proton therapy via 3D protoacoustic Imaging in a clinical scenario.

Wang S, Gonzalez G, Sun L, Xu Y, Pandey P, Chen Y Npj Imaging. 2025; 2(1):34.

PMID: 40078731 PMC: 11893450. DOI: 10.1038/s44303-024-00039-x.


Toward real-time, volumetric dosimetry for FLASH-capable clinical synchrocyclotrons using protoacoustic imaging.

Wang S, Gonzalez G, Owen D, Sun L, Liu Y, Zwart T Med Phys. 2024; 51(11):8496-8505.

PMID: 39073707 PMC: 11530303. DOI: 10.1002/mp.17318.


Simulation study of protoacoustics as a real-time in-line dosimetry tool for FLASH proton therapy.

Kim K, Pandey P, Gonzalez G, Chen Y, Xiang L Med Phys. 2023; 51(7):5070-5080.

PMID: 38116792 PMC: 11186976. DOI: 10.1002/mp.16894.


Deep learning-based protoacoustic signal denoising for proton range verification.

Wang J, Sohn J, Lei Y, Nie W, Zhou J, Avery S Biomed Phys Eng Express. 2023; 9(4.

PMID: 37141867 PMC: 11741904. DOI: 10.1088/2057-1976/acd257.


Single pulse protoacoustic range verification using a clinical synchrocyclotron.

Caron J, Gonzalez G, Pandey P, Wang S, Prather K, Ahmad S Phys Med Biol. 2023; 68(4).

PMID: 36634371 PMC: 10567060. DOI: 10.1088/1361-6560/acb2ae.


References
1.
Herzog E, Taruttis A, Beziere N, Lutich A, Razansky D, Ntziachristos V . Optical imaging of cancer heterogeneity with multispectral optoacoustic tomography. Radiology. 2012; 263(2):461-8. DOI: 10.1148/radiol.11111646. View

2.
Jones K, Stappen F, Bawiec C, Janssens G, Lewin P, Prieels D . Experimental observation of acoustic emissions generated by a pulsed proton beam from a hospital-based clinical cyclotron. Med Phys. 2015; 42(12):7090-7. DOI: 10.1118/1.4935865. View

3.
Hueso-Gonzalez F, Enghardt W, Fiedler F, Golnik C, Janssens G, Petzoldt J . First test of the prompt gamma ray timing method with heterogeneous targets at a clinical proton therapy facility. Phys Med Biol. 2015; 60(16):6247-72. DOI: 10.1088/0031-9155/60/16/6247. View

4.
Heijblom M, Piras D, Brinkhuis M, van Hespen J, van den Engh F, van der Schaaf M . Photoacoustic image patterns of breast carcinoma and comparisons with Magnetic Resonance Imaging and vascular stained histopathology. Sci Rep. 2015; 5:11778. PMC: 4498178. DOI: 10.1038/srep11778. View

5.
Bin J, Ma W, Wang H, Streeter M, Kreuzer C, Kiefer D . Ion Acceleration Using Relativistic Pulse Shaping in Near-Critical-Density Plasmas. Phys Rev Lett. 2015; 115(6):064801. DOI: 10.1103/PhysRevLett.115.064801. View