» Articles » PMID: 27376682

Mechanical Plasticity of Cells

Overview
Journal Nat Mater
Date 2016 Jul 5
PMID 27376682
Citations 52
Authors
Affiliations
Soon will be listed here.
Abstract

Under mechanical loading, most living cells show a viscoelastic deformation that follows a power law in time. After removal of the mechanical load, the cell shape recovers only incompletely to its original undeformed configuration. Here, we show that incomplete shape recovery is due to an additive plastic deformation that displays the same power-law dynamics as the fully reversible viscoelastic deformation response. Moreover, the plastic deformation is a constant fraction of the total cell deformation and originates from bond ruptures within the cytoskeleton. A simple extension of the prevailing viscoelastic power-law response theory with a plastic element correctly predicts the cell behaviour under cyclic loading. Our findings show that plastic energy dissipation during cell deformation is tightly linked to elastic cytoskeletal stresses, which suggests the existence of an adaptive mechanism that protects the cell against mechanical damage.

Citing Articles

The landscape of cell lineage tracing.

Feng Y, Liu G, Li H, Cheng L Sci China Life Sci. 2025; .

PMID: 40035969 DOI: 10.1007/s11427-024-2751-6.


Advances in mechanotransduction and sonobiology: effects of audible acoustic waves and low-vibration stimulations on mammalian cells.

Del Rosario-Gilabert D, Valenzuela-Miralles A, Esquiva G Biophys Rev. 2025; 16(6):783-812.

PMID: 39830129 PMC: 11735818. DOI: 10.1007/s12551-024-01242-1.


Characteristic frequencies of localized stress relaxation in scaling-law rheology of living cells.

Hang J, Gao H, Xu G Biophys J. 2024; 124(1):125-133.

PMID: 39563036 PMC: 11739877. DOI: 10.1016/j.bpj.2024.11.015.


Structural response of microtubule and actin cytoskeletons to direct intracellular load.

Orii R, Tanimoto H J Cell Biol. 2024; 224(2).

PMID: 39545874 PMC: 11572716. DOI: 10.1083/jcb.202403136.


Microfluidic technologies for cell deformability cytometry.

Chen H, Guo J, Bian F, Zhao Y Smart Med. 2024; 1(1):e20220001.

PMID: 39188737 PMC: 11235995. DOI: 10.1002/SMMD.20220001.


References
1.
Hu S, Chen J, Fabry B, Numaguchi Y, Gouldstone A, Ingber D . Intracellular stress tomography reveals stress focusing and structural anisotropy in cytoskeleton of living cells. Am J Physiol Cell Physiol. 2003; 285(5):C1082-90. DOI: 10.1152/ajpcell.00159.2003. View

2.
Smith B, Tolloczko B, Martin J, Grutter P . Probing the viscoelastic behavior of cultured airway smooth muscle cells with atomic force microscopy: stiffening induced by contractile agonist. Biophys J. 2005; 88(4):2994-3007. PMC: 1305393. DOI: 10.1529/biophysj.104.046649. View

3.
Balland M, Desprat N, Icard D, Fereol S, Asnacios A, Browaeys J . Power laws in microrheology experiments on living cells: Comparative analysis and modeling. Phys Rev E Stat Nonlin Soft Matter Phys. 2006; 74(2 Pt 1):021911. DOI: 10.1103/PhysRevE.74.021911. View

4.
Bausch A, Hellerer U, Essler M, Aepfelbacher M, Sackmann E . Rapid stiffening of integrin receptor-actin linkages in endothelial cells stimulated with thrombin: a magnetic bead microrheology study. Biophys J. 2001; 80(6):2649-57. PMC: 1301452. DOI: 10.1016/S0006-3495(01)76234-0. View

5.
Fernandez P, Ott A . Single cell mechanics: stress stiffening and kinematic hardening. Phys Rev Lett. 2008; 100(23):238102. DOI: 10.1103/PhysRevLett.100.238102. View