» Articles » PMID: 27366207

Microbial Synthesis of Poly-γ-glutamic Acid: Current Progress, Challenges, and Future Perspectives

Overview
Publisher Biomed Central
Specialty Biotechnology
Date 2016 Jul 2
PMID 27366207
Citations 65
Authors
Affiliations
Soon will be listed here.
Abstract

Poly-γ-glutamic acid (γ-PGA) is a naturally occurring biopolymer made from repeating units of l-glutamic acid, d-glutamic acid, or both. Since some bacteria are capable of vigorous γ-PGA biosynthesis from renewable biomass, γ-PGA is considered a promising bio-based chemical and is already widely used in the food, medical, and wastewater industries due to its biodegradable, non-toxic, and non-immunogenic properties. In this review, we consider the properties, biosynthetic pathway, production strategies, and applications of γ-PGA. Microbial biosynthesis of γ-PGA and the molecular mechanisms regulating production are covered in particular detail. Genetic engineering and optimization of the growth medium, process control, and downstream processing have proved to be effective strategies for lowering the cost of production, as well as manipulating the molecular mass and conformational/enantiomeric properties that facilitate screening of competitive γ-PGA producers. Finally, future prospects of microbial γ-PGA production are discussed in light of recent progress, challenges, and trends in this field.

Citing Articles

Citrate Supplementation Modulates Medium Viscosity and Poly-γ-Glutamic Acid Synthesis by Engineered 168.

Volker F, Hoffmann K, Halmschlag B, Maass S, Buchs J, Blank L Eng Life Sci. 2025; 25(3):e70009.

PMID: 40046170 PMC: 11880625. DOI: 10.1002/elsc.70009.


Modulation of the Sporulation Dynamics in the Plant-Probiotic Bacillus velezensis 83 via Carbon and Quorum-Sensing Metabolites.

Soriano-Pena E, Luna-Bulbarela A, Cristiano-Fajardo S, Galindo E, Serrano-Carreon L Probiotics Antimicrob Proteins. 2025; .

PMID: 40009330 DOI: 10.1007/s12602-025-10482-w.


Overexpressing Endopeptidase Inhibitor IseA Enhances Biomass and Biochemical Production of Bacillus licheniformis.

Zhang Y, He P, Hu S, Zhang R, Asfandyar , Chen S Curr Microbiol. 2025; 82(3):116.

PMID: 39903300 DOI: 10.1007/s00284-025-04096-2.


Analysis of glutamate-dependent mechanism and optimization of fermentation conditions for poly-gamma-glutamic acid production by Bacillus subtilis SCP017-03.

Wu C, Gou Y, Jing S, Li W, Ge F, Li J PLoS One. 2025; 20(1):e0310556.

PMID: 39883687 PMC: 11781620. DOI: 10.1371/journal.pone.0310556.


A Convenient and Highly Efficient Strategy for Esterification of Poly (γ-Glutamic Acid) with Alkyl Halides at Room Temperature.

Ai Y, Zhan Y, Cai D, Chen S Polymers (Basel). 2025; 17(1.

PMID: 39795414 PMC: 11723209. DOI: 10.3390/polym17010010.


References
1.
Ko Y, Gross R . Effects of glucose and glycerol on gamma-poly(glutamic acid) formation by Bacillus licheniformis ATCC 9945a. Biotechnol Bioeng. 1999; 57(4):430-7. DOI: 10.1002/(sici)1097-0290(19980220)57:4<430::aid-bit6>3.0.co;2-n. View

2.
Congregado F, Bou J, Munoz-Guerra S . Biosynthesis and ultrasonic degradation of bacterial poly(gamma-glutamic acid). Biotechnol Bioeng. 1999; 63(1):110-5. View

3.
Otani Y, Tabata Y, Ikada Y . Sealing effect of rapidly curable gelatin-poly (L-glutamic acid) hydrogel glue on lung air leak. Ann Thorac Surg. 1999; 67(4):922-6. DOI: 10.1016/s0003-4975(99)00153-8. View

4.
Ashiuchi M, Soda K, Misono H . Characterization of yrpC gene product of Bacillus subtilis IFO 3336 as glutamate racemase isozyme. Biosci Biotechnol Biochem. 1999; 63(5):792-8. DOI: 10.1271/bbb.63.792. View

5.
Tran L, Nagai T, Itoh Y . Divergent structure of the ComQXPA quorum-sensing components: molecular basis of strain-specific communication mechanism in Bacillus subtilis. Mol Microbiol. 2000; 37(5):1159-71. DOI: 10.1046/j.1365-2958.2000.02069.x. View