» Articles » PMID: 27362559

Efficient and Reliable Production of Vectors for the Study of the Repair, Mutagenesis, and Phenotypic Consequences of Defined DNA Damage Lesions in Mammalian Cells

Overview
Journal PLoS One
Date 2016 Jul 1
PMID 27362559
Citations 2
Authors
Affiliations
Soon will be listed here.
Abstract

Mammalian cells are constantly and unavoidably exposed to DNA damage from endogenous and exogenous sources, frequently to the detriment of genomic integrity and biological function. Cells acquire a large number of chemically diverse lesions per day, and each can have a different genetic fate and biological consequences. However, our knowledge of how and when specific lesions are repaired or how they may compromise the fidelity of DNA replication or transcription and lead to deleterious biological endpoints in mammalian cells is limited. Studying individual lesions requires technically challenging approaches for the targeted introduction of defined lesions into relevant DNA sequences of interest. Here, we present a systematic analysis of factors influencing yield and an improved, efficient and reliable protocol for the production of mammalian expression phagemid vectors containing defined DNA base modifications in any sequence position of either complementary DNA strand. We applied our improved protocol to study the transcriptional mutagenesis-mediated phenotypic consequences of the common oxidative lesion 5-hydroxyuracil, placed in the G12 mutational hotspot of the KRAS oncogene. 5-OHU induced sustained oncogenic signaling in Neil1-/-Neil2-/- mouse cells. The resulting advance in technology will have broad applicability for investigation of single lesion DNA repair, mutagenesis, and DNA damage responses in mammalian cells.

Citing Articles

Easily-controllable, helper phage-free single-stranded phagemid production system.

Suzuki T, Kamiya H Genes Environ. 2022; 44(1):25.

PMID: 36380394 PMC: 9667628. DOI: 10.1186/s41021-022-00254-1.


Transcriptional mutagenesis reduces splicing fidelity in mammalian cells.

Paredes J, Ezerskyte M, Bottai M, Dreij K Nucleic Acids Res. 2017; 45(11):6520-6529.

PMID: 28460122 PMC: 5499639. DOI: 10.1093/nar/gkx339.

References
1.
Barnes D, Lindahl T . Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu Rev Genet. 2004; 38:445-76. DOI: 10.1146/annurev.genet.38.072902.092448. View

2.
Kiss-Toth E, Dower S, Sayers J . A method for enhancing the transfection efficiency of minipreps obtained from plasmid cDNA libraries. Anal Biochem. 2001; 288(2):230-2. DOI: 10.1006/abio.2000.4858. View

3.
Dizdaroglu M, Karakaya A, Jaruga P, Slupphaug G, Krokan H . Novel activities of human uracil DNA N-glycosylase for cytosine-derived products of oxidative DNA damage. Nucleic Acids Res. 1996; 24(3):418-22. PMC: 145658. DOI: 10.1093/nar/24.3.418. View

4.
Dou H, Mitra S, Hazra T . Repair of oxidized bases in DNA bubble structures by human DNA glycosylases NEIL1 and NEIL2. J Biol Chem. 2003; 278(50):49679-84. DOI: 10.1074/jbc.M308658200. View

5.
Hegde M, Hegde P, Bellot L, Mandal S, Hazra T, Li G . Prereplicative repair of oxidized bases in the human genome is mediated by NEIL1 DNA glycosylase together with replication proteins. Proc Natl Acad Sci U S A. 2013; 110(33):E3090-9. PMC: 3746843. DOI: 10.1073/pnas.1304231110. View