» Articles » PMID: 27338489

Sub-Optimal Treatment of Bacterial Biofilms

Overview
Specialty Pharmacology
Date 2016 Jun 25
PMID 27338489
Citations 26
Authors
Affiliations
Soon will be listed here.
Abstract

Bacterial biofilm is an emerging clinical problem recognized in the treatment of infectious diseases within the last two decades. The appearance of microbial biofilm in clinical settings is steadily increasing due to several reasons including the increased use of quality of life-improving artificial devices. In contrast to infections caused by planktonic bacteria that respond relatively well to standard antibiotic therapy, biofilm-forming bacteria tend to cause chronic infections whereby infections persist despite seemingly adequate antibiotic therapy. This review briefly describes the responses of biofilm matrix components and biofilm-associated bacteria towards sub-lethal concentrations of antimicrobial agents, which may include the generation of genetic and phenotypic variabilities. Clinical implications of bacterial biofilms in relation to antibiotic treatments are also discussed.

Citing Articles

Antimicrobial Sub-MIC induces Staphylococcus aureus biofilm formation without affecting the bacterial count.

Elawady R, Aboulela A, Gaballah A, Ghazal A, Amer A BMC Infect Dis. 2024; 24(1):1065.

PMID: 39342123 PMC: 11438285. DOI: 10.1186/s12879-024-09790-3.


Biofilm Lifecycle: Involvement of Mechanical Constraints and Timeline of Matrix Production.

David A, Tahrioui A, Tareau A, Forge A, Gonzalez M, Bouffartigues E Antibiotics (Basel). 2024; 13(8).

PMID: 39199987 PMC: 11350761. DOI: 10.3390/antibiotics13080688.


Agar and agarose used for Staphylococcus aureus biofilm cultivation impact fluoroquinolone tolerance.

Power A, Mok W J Appl Microbiol. 2024; 135(8).

PMID: 39066496 PMC: 11301810. DOI: 10.1093/jambio/lxae191.


Subminimum Inhibitory Concentrations Tetracycline Antibiotics Induce Biofilm Formation in Minocycline-Resistant by Affecting Bacterial Physical and Chemical Properties and Associated Genes Expression.

Guo T, Yang L, Zhou N, Wang Z, Huan C, Zhou J ACS Infect Dis. 2024; 10(8):2929-2938.

PMID: 38949961 PMC: 11321339. DOI: 10.1021/acsinfecdis.4c00280.


Fighting fibrin with fibrin: Vancomycin delivery into coagulase-mediated Staphylococcus aureus biofilms via fibrin-based nanoparticle binding.

Scull G, Aligwekwe A, Rey Y, Koch D, Nellenbach K, Sheridan A J Biomed Mater Res A. 2024; 112(12):2071-2085.

PMID: 38874363 PMC: 11464197. DOI: 10.1002/jbm.a.37760.


References
1.
Cheow W, Chang M, Hadinoto K . Antibacterial efficacy of inhalable antibiotic-encapsulated biodegradable polymeric nanoparticles against E. coli biofilm cells. J Biomed Nanotechnol. 2011; 6(4):391-403. DOI: 10.1166/jbn.2010.1116. View

2.
Kvist M, Hancock V, Klemm P . Inactivation of efflux pumps abolishes bacterial biofilm formation. Appl Environ Microbiol. 2008; 74(23):7376-82. PMC: 2592912. DOI: 10.1128/AEM.01310-08. View

3.
Parsek M, Greenberg E . Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol. 2005; 13(1):27-33. DOI: 10.1016/j.tim.2004.11.007. View

4.
Weissman K, Muller R . Myxobacterial secondary metabolites: bioactivities and modes-of-action. Nat Prod Rep. 2010; 27(9):1276-95. DOI: 10.1039/c001260m. View

5.
Mathur J, Davis B, Waldor M . Antimicrobial peptides activate the Vibrio cholerae sigmaE regulon through an OmpU-dependent signalling pathway. Mol Microbiol. 2006; 63(3):848-58. DOI: 10.1111/j.1365-2958.2006.05544.x. View