» Articles » PMID: 27326933

A Drosophila Genome-Wide Screen Identifies Regulators of Steroid Hormone Production and Developmental Timing

Abstract

Steroid hormones control important developmental processes and are linked to many diseases. To systematically identify genes and pathways required for steroid production, we performed a Drosophila genome-wide in vivo RNAi screen and identified 1,906 genes with potential roles in steroidogenesis and developmental timing. Here, we use our screen as a resource to identify mechanisms regulating intracellular levels of cholesterol, a substrate for steroidogenesis. We identify a conserved fatty acid elongase that underlies a mechanism that adjusts cholesterol trafficking and steroidogenesis with nutrition and developmental programs. In addition, we demonstrate the existence of an autophagosomal cholesterol mobilization mechanism and show that activation of this system rescues Niemann-Pick type C1 deficiency that causes a disorder characterized by cholesterol accumulation. These cholesterol-trafficking mechanisms are regulated by TOR and feedback signaling that couples steroidogenesis with growth and ensures proper maturation timing. These results reveal genes regulating steroidogenesis during development that likely modulate disease mechanisms.

Citing Articles

Nutrient status alters developmental fates via a switch in mitochondrial homeodynamics.

Zhang J, Liu S, Li Y, Xu G, Deng H, King-Jones K Nat Commun. 2025; 16(1):1258.

PMID: 39893174 PMC: 11787341. DOI: 10.1038/s41467-025-56528-z.


Schlank orchestrates insect developmental transition by switching H3K27 acetylation to trimethylation in the prothoracic gland.

Yuan D, Zhang X, Yang Y, Wei L, Li H, Zhao T Proc Natl Acad Sci U S A. 2024; 121(35):e2401861121.

PMID: 39167603 PMC: 11363265. DOI: 10.1073/pnas.2401861121.


Cholesterol Dietary Intake and Tumor Cell Homeostasis Drive Early Epithelial Tumorigenesis: A Potential Modelization of Early Prostate Tumorigenesis.

Vialat M, Baabdaty E, Trousson A, Kocer A, Lobaccaro J, Baron S Cancers (Basel). 2024; 16(11).

PMID: 38893271 PMC: 11172085. DOI: 10.3390/cancers16112153.


Drosophila Evi5 is a critical regulator of intracellular iron transport via transferrin and ferritin interactions.

Soltani S, Webb S, Kroll T, King-Jones K Nat Commun. 2024; 15(1):4045.

PMID: 38744835 PMC: 11094094. DOI: 10.1038/s41467-024-48165-9.


KDM5-mediated activation of genes required for mitochondrial biology is necessary for viability in Drosophila.

Rogers M, Marshall O, Secombe J Development. 2023; 150(21).

PMID: 37800333 PMC: 10651110. DOI: 10.1242/dev.202024.


References
1.
Hilvo M, Denkert C, Lehtinen L, Muller B, Brockmoller S, Seppanen-Laakso T . Novel theranostic opportunities offered by characterization of altered membrane lipid metabolism in breast cancer progression. Cancer Res. 2011; 71(9):3236-45. DOI: 10.1158/0008-5472.CAN-10-3894. View

2.
Tennessen J, Thummel C . Coordinating growth and maturation - insights from Drosophila. Curr Biol. 2011; 21(18):R750-7. PMC: 4353487. DOI: 10.1016/j.cub.2011.06.033. View

3.
Rewitz K, Yamanaka N, OConnor M . Developmental checkpoints and feedback circuits time insect maturation. Curr Top Dev Biol. 2013; 103:1-33. PMC: 4060521. DOI: 10.1016/B978-0-12-385979-2.00001-0. View

4.
Tolkach Y, Merseburger A, Herrmann T, Kuczyk M, Serth J, Imkamp F . Signatures of Adverse Pathological Features, Androgen Insensitivity and Metastatic Potential in Prostate Cancer. Anticancer Res. 2015; 35(10):5443-51. View

5.
Chang Y, Neufeld T . An Atg1/Atg13 complex with multiple roles in TOR-mediated autophagy regulation. Mol Biol Cell. 2009; 20(7):2004-14. PMC: 2663935. DOI: 10.1091/mbc.e08-12-1250. View