» Articles » PMID: 27288316

From Neuron Biophysics to Orientation Selectivity in Electrically Coupled Networks of Neocortical L2/3 Large Basket Cells

Overview
Journal Cereb Cortex
Specialty Neurology
Date 2016 Jun 12
PMID 27288316
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

In the neocortex, inhibitory interneurons of the same subtype are electrically coupled with each other via dendritic gap junctions (GJs). The impact of multiple GJs on the biophysical properties of interneurons and thus on their input processing is unclear. The present experimentally based theoretical study examined GJs in L2/3 large basket cells (L2/3 LBCs) with 3 goals in mind: (1) To evaluate the errors due to GJs in estimating the cable properties of individual L2/3 LBCs and suggest ways to correct these errors when modeling these cells and the networks they form; (2) to bracket the GJ conductance value (0.05-0.25 nS) and membrane resistivity (10 000-40 000 Ω cm(2)) of L2/3 LBCs; these estimates are tightly constrained by in vitro input resistance (131 ± 18.5 MΩ) and the coupling coefficient (1-3.5%) of these cells; and (3) to explore the functional implications of GJs, and show that GJs: (i) dynamically modulate the effective time window for synaptic integration; (ii) improve the axon's capability to encode rapid changes in synaptic inputs; and (iii) reduce the orientation selectivity, linearity index, and phase difference of L2/3 LBCs. Our study provides new insights into the role of GJs and calls for caution when using in vitro measurements for modeling electrically coupled neuronal networks.

Citing Articles

Sub-threshold neuronal activity and the dynamical regime of cerebral cortex.

Amsalem O, Inagaki H, Yu J, Svoboda K, Darshan R Nat Commun. 2024; 15(1):7958.

PMID: 39261492 PMC: 11390892. DOI: 10.1038/s41467-024-51390-x.


The Anterolateral Barrel Subfield Differs from the Posteromedial Barrel Subfield in the Morphology and Cell Density of Parvalbumin-Positive GABAergic Interneurons.

Shigematsu N, Miyamoto Y, Esumi S, Fukuda T eNeuro. 2024; 11(3).

PMID: 38438262 PMC: 10965236. DOI: 10.1523/ENEURO.0518-22.2024.


Thalamic control of sensory processing and spindles in a biophysical somatosensory thalamoreticular circuit model of wakefulness and sleep.

Iavarone E, Simko J, Shi Y, Bertschy M, Garcia-Amado M, Litvak P Cell Rep. 2023; 42(3):112200.

PMID: 36867532 PMC: 10066598. DOI: 10.1016/j.celrep.2023.112200.


Simulations of cortical networks using spatially extended conductance-based neuronal models.

Haufler D, Ito S, Koch C, Arkhipov A J Physiol. 2022; 601(15):3123-3139.

PMID: 36567262 PMC: 10290729. DOI: 10.1113/JP284030.


On the Diverse Functions of Electrical Synapses.

Vaughn M, Haas J Front Cell Neurosci. 2022; 16:910015.

PMID: 35755782 PMC: 9219736. DOI: 10.3389/fncel.2022.910015.


References
1.
Marandykina A, Palacios-Prado N, Rimkute L, Skeberdis V, Bukauskas F . Regulation of connexin36 gap junction channels by n-alkanols and arachidonic acid. J Physiol. 2013; 591(8):2087-101. PMC: 3634521. DOI: 10.1113/jphysiol.2013.250910. View

2.
Druckmann S, Hill S, Schurmann F, Markram H, Segev I . A hierarchical structure of cortical interneuron electrical diversity revealed by automated statistical analysis. Cereb Cortex. 2012; 23(12):2994-3006. DOI: 10.1093/cercor/bhs290. View

3.
Niell C, Stryker M . Modulation of visual responses by behavioral state in mouse visual cortex. Neuron. 2010; 65(4):472-9. PMC: 3184003. DOI: 10.1016/j.neuron.2010.01.033. View

4.
Angulo M, Rossier J, Audinat E . Postsynaptic glutamate receptors and integrative properties of fast-spiking interneurons in the rat neocortex. J Neurophysiol. 1999; 82(3):1295-302. DOI: 10.1152/jn.1999.82.3.1295. View

5.
Anastasiades P, Marques-Smith A, Lyngholm D, Lickiss T, Raffiq S, Katzel D . GABAergic interneurons form transient layer-specific circuits in early postnatal neocortex. Nat Commun. 2016; 7:10584. PMC: 4743032. DOI: 10.1038/ncomms10584. View