» Articles » PMID: 27277345

A Stable Room-temperature Sodium-sulfur Battery

Overview
Journal Nat Commun
Specialty Biology
Date 2016 Jun 10
PMID 27277345
Citations 44
Authors
Affiliations
Soon will be listed here.
Abstract

High-energy rechargeable batteries based on earth-abundant materials are important for mobile and stationary storage technologies. Rechargeable sodium-sulfur batteries able to operate stably at room temperature are among the most sought-after platforms because such cells take advantage of a two-electron-redox process to achieve high storage capacity from inexpensive electrode materials. Here we report a room-temperature sodium-sulfur battery that uses a microporous carbon-sulfur composite cathode, and a liquid carbonate electrolyte containing the ionic liquid 1-methyl-3-propylimidazolium-chlorate tethered to SiO2 nanoparticles. We show that these cells can cycle stably at a rate of 0.5 C (1 C=1675, mAh g(-1)) with 600 mAh g(-1) reversible capacity and nearly 100% Coulombic efficiency. By means of spectroscopic and electrochemical analysis, we find that the particles form a sodium-ion conductive film on the anode, which stabilizes deposition of sodium. We also find that sulfur remains interred in the carbon pores and undergo solid-state electrochemical reactions with sodium ions.

Citing Articles

Nanomaterials for Energy Storage Systems-A Review.

Mohammed H, Mia M, Wiggins J, Desai S Molecules. 2025; 30(4).

PMID: 40005192 PMC: 11858221. DOI: 10.3390/molecules30040883.


Design towards recyclable micron-sized NaS cathode with self-refinement mechanism.

Lu S, Liu Y, Xu J, Weng S, Xue J, Liu L Nat Commun. 2024; 15(1):9995.

PMID: 39557850 PMC: 11573996. DOI: 10.1038/s41467-024-54316-9.


Sustainable Sulfur-Carbon Hybrids for Efficient Sulfur Redox Conversions in Nanoconfined Spaces.

Senokos E, Au H, Eren E, Horner T, Song Z, Tarakina N Small. 2024; 20(51):e2407300.

PMID: 39396369 PMC: 11656682. DOI: 10.1002/smll.202407300.


The role of electrocatalytic materials for developing post-lithium metal||sulfur batteries.

Ye C, Li H, Chen Y, Hao J, Liu J, Shan J Nat Commun. 2024; 15(1):4797.

PMID: 38839870 PMC: 11535197. DOI: 10.1038/s41467-024-49164-6.


Halogen-powered static conversion chemistry.

Li X, Xu W, Zhi C Nat Rev Chem. 2024; 8(5):359-375.

PMID: 38671189 DOI: 10.1038/s41570-024-00597-z.


References
1.
Bauer I, Kohl M, Althues H, Kaskel S . Shuttle suppression in room temperature sodium-sulfur batteries using ion selective polymer membranes. Chem Commun (Camb). 2014; 50(24):3208-10. DOI: 10.1039/c4cc00161c. View

2.
Zhao Q, Hu X, Zhang K, Zhang N, Hu Y, Chen J . Sulfur nanodots electrodeposited on ni foam as high-performance cathode for Li-S batteries. Nano Lett. 2014; 15(1):721-6. DOI: 10.1021/nl504263m. View

3.
Wang Z, Dong Y, Li H, Zhao Z, Wu H, Hao C . Enhancing lithium-sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat Commun. 2014; 5:5002. DOI: 10.1038/ncomms6002. View

4.
Tarascon J, Armand M . Issues and challenges facing rechargeable lithium batteries. Nature. 2001; 414(6861):359-67. DOI: 10.1038/35104644. View

5.
Wei S, Ma L, Hendrickson K, Tu Z, Archer L . Metal-Sulfur Battery Cathodes Based on PAN-Sulfur Composites. J Am Chem Soc. 2015; 137(37):12143-52. DOI: 10.1021/jacs.5b08113. View