» Articles » PMID: 27274984

A Quantitative Genomic Approach for Analysis of Fitness and Stress Related Traits in a Drosophila Melanogaster Model Population

Overview
Journal Int J Genomics
Publisher Wiley
Date 2016 Jun 9
PMID 27274984
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

The ability of natural populations to withstand environmental stresses relies partly on their adaptive ability. In this study, we used a subset of the Drosophila Genetic Reference Panel, a population of inbred, genome-sequenced lines derived from a natural population of Drosophila melanogaster, to investigate whether this population harbors genetic variation for a set of stress resistance and life history traits. Using a genomic approach, we found substantial genetic variation for metabolic rate, heat stress resistance, expression of a major heat shock protein, and egg-to-adult viability investigated at a benign and a higher stressful temperature. This suggests that these traits will be able to evolve. In addition, we outline an approach to conduct pathway associations based on genomic linear models, which has potential to identify adaptive genes and pathways, and therefore can be a valuable tool in conservation genomics.

Citing Articles

The Role of Genetic Variation in Shaping Phenotypic Responses to Diet in Aging .

Bak N, Mackay T, Morgante F, Nielsen K, Nielsen J, Kristensen T bioRxiv. 2025; .

PMID: 39868103 PMC: 11761520. DOI: 10.1101/2025.01.09.632132.


Integrating GWAS and Transcriptomics to Identify the Molecular Underpinnings of Thermal Stress Responses in .

Lecheta M, Awde D, OLeary T, Unfried L, Jacobs N, Whitlock M Front Genet. 2020; 11:658.

PMID: 32655626 PMC: 7324644. DOI: 10.3389/fgene.2020.00658.


Genetic variation for tolerance to high temperatures in a population of .

Rolandi C, Lighton J, de la Vega G, Schilman P, Mensch J Ecol Evol. 2018; 8(21):10374-10383.

PMID: 30464811 PMC: 6238130. DOI: 10.1002/ece3.4409.


Genetic Decoupling of Thermal Hardiness across Metamorphosis in Drosophila melanogaster.

Freda P, Alex J, Morgan T, Ragland G Integr Comp Biol. 2017; 57(5):999-1009.

PMID: 29045669 PMC: 5886339. DOI: 10.1093/icb/icx102.


Genomic Analysis of Genotype-by-Social Environment Interaction for Aggressive Behavior.

Rohde P, Gaertner B, Ward K, Sorensen P, Mackay T Genetics. 2017; 206(4):1969-1984.

PMID: 28550016 PMC: 5560801. DOI: 10.1534/genetics.117.200642.

References
1.
Sarup P, Sorensen J, Kristensen T, Hoffmann A, Loeschcke V, Paige K . Candidate genes detected in transcriptome studies are strongly dependent on genetic background. PLoS One. 2011; 6(1):e15644. PMC: 3026803. DOI: 10.1371/journal.pone.0015644. View

2.
Mackay T, Richards S, Stone E, Barbadilla A, Ayroles J, Zhu D . The Drosophila melanogaster Genetic Reference Panel. Nature. 2012; 482(7384):173-8. PMC: 3683990. DOI: 10.1038/nature10811. View

3.
Stetler R, Gan Y, Zhang W, Liou A, Gao Y, Cao G . Heat shock proteins: cellular and molecular mechanisms in the central nervous system. Prog Neurobiol. 2010; 92(2):184-211. PMC: 2939168. DOI: 10.1016/j.pneurobio.2010.05.002. View

4.
Marron M, Markow T, Kain K, Gibbs A . Effects of starvation and desiccation on energy metabolism in desert and mesic Drosophila. J Insect Physiol. 2003; 49(3):261-70. DOI: 10.1016/s0022-1910(02)00287-1. View

5.
Patnala R, Clements J, Batra J . Candidate gene association studies: a comprehensive guide to useful in silico tools. BMC Genet. 2013; 14:39. PMC: 3655892. DOI: 10.1186/1471-2156-14-39. View