» Articles » PMID: 2725489

Accurate Processing and Amplification of Cloned Germ Line Copies of Ribosomal DNA Injected into Developing Nuclei of Tetrahymena Thermophila

Overview
Journal Mol Cell Biol
Specialty Cell Biology
Date 1989 Mar 1
PMID 2725489
Citations 39
Authors
Affiliations
Soon will be listed here.
Abstract

The ciliate Tetrahymena thermophila contains a chromosomally integrated copy of the rRNA genes (rDNA) in its germinal (micronuclear) genome. These genes are excised from the chromosome through a process involving site-specific DNA breakage, become linear palindromic molecules with added telomeres, and are greatly amplified during development of the somatic nucleus (macronucleus). In this study, we cloned a 15-kilobase segment of the germ line DNA containing these genes and injected it into developing macronuclei of T. thermophila. Up to 11% of injected cells were transformed to the paromomycin-resistant phenotype specified by the injected DNA. Transformation efficiency was dependent on the developmental stages of the injected cells and the integrity of the injected DNA but not the DNA concentration or conformation. The injected DNA was apparently processed and amplified correctly to produce rDNA molecules with the expected linear palindromic structure which carried the appropriate physical markers. Thus, the 15-kilobase DNA contained all cis-acting sequences sufficient for the DNA-processing events leading to rDNA amplification in T. thermophila.

Citing Articles

Target Protein Expression on Tetrahymena thermophila Cell Surface Using the Signal Peptide and GPI Anchor Sequences of the Immobilization Antigen of Cryptocaryon irritans.

Watanabe Y, Asada M, Inokuchi M, Kotake M, Yoshinaga T Mol Biotechnol. 2023; 66(8):1907-1918.

PMID: 37480447 PMC: 11282128. DOI: 10.1007/s12033-023-00824-w.


Programmed genome rearrangements in ciliates.

Rzeszutek I, Maurer-Alcala X, Nowacki M Cell Mol Life Sci. 2020; 77(22):4615-4629.

PMID: 32462406 PMC: 7599177. DOI: 10.1007/s00018-020-03555-2.


The completed macronuclear genome of a model ciliate Tetrahymena thermophila and its application in genome scrambling and copy number analyses.

Sheng Y, Duan L, Cheng T, Qiao Y, Stover N, Gao S Sci China Life Sci. 2020; 63(10):1534-1542.

PMID: 32297047 PMC: 7906287. DOI: 10.1007/s11427-020-1689-4.


A domesticated PiggyBac transposase interacts with heterochromatin and catalyzes reproducible DNA elimination in Tetrahymena.

Vogt A, Mochizuki K PLoS Genet. 2013; 9(12):e1004032.

PMID: 24348275 PMC: 3861120. DOI: 10.1371/journal.pgen.1004032.


Mus81 nuclease and Sgs1 helicase are essential for meiotic recombination in a protist lacking a synaptonemal complex.

Lukaszewicz A, Howard-Till R, Loidl J Nucleic Acids Res. 2013; 41(20):9296-309.

PMID: 23935123 PMC: 3814389. DOI: 10.1093/nar/gkt703.


References
1.
Bruns P, Brussard T . Pair formation in tetrahymena pyriformis, an inducible developmental system. J Exp Zool. 1974; 188(3):337-44. DOI: 10.1002/jez.1401880309. View

2.
Kiss G, Pearlman R . Extrachromosomal rDNA of Tetrahymena thermophila is not a perfect palindrome. Gene. 1981; 13(3):281-7. DOI: 10.1016/0378-1119(81)90032-9. View

3.
Gall J . Free ribosomal RNA genes in the macronucleus of Tetrahymena. Proc Natl Acad Sci U S A. 1974; 71(8):3078-81. PMC: 388624. DOI: 10.1073/pnas.71.8.3078. View

4.
Gorovsky M, Yao M, Keevert J, Pleger G . Isolation of micro- and macronuclei of Tetrahymena pyriformis. Methods Cell Biol. 1975; 9(0):311-27. DOI: 10.1016/s0091-679x(08)60080-1. View

5.
Karrer K, Gall J . The macronuclear ribosomal DNA of Tetrahymena pyriformis is a palindrome. J Mol Biol. 1976; 104(2):421-53. DOI: 10.1016/0022-2836(76)90280-1. View